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Abstract

This paper asks whether current self-supervised learning methods, if sufficiently
scaled up, would be able to reach human-level visual object recognition capa-
bilities with the same type and amount of visual experience humans learn from.
Previous work on this question only considered the scaling of data size. Here, we
consider the simultaneous scaling of data size, model size, and image resolution.
We perform a scaling experiment with vision transformers up to 633M parameters
in size (ViT-H/14) trained with up to 5K hours of human-like video data (long,
continuous, mostly egocentric videos) with image resolutions of up to 476×476
pixels. The efficiency of masked autoencoders (MAEs) as a self-supervised learn-
ing algorithm makes it possible to run this scaling experiment on an unassuming
academic budget. We find that it is feasible to reach human-level object recogni-
tion capacity at sub-human scales of model size, data size, and image size, if these
factors are scaled up simultaneously. To give a concrete example, we estimate
that a 2.5B parameter ViT model trained with 20K hours (2.3 years) of human-
like video data with a spatial resolution of 952×952 pixels should be able to reach
roughly human-level accuracy on ImageNet. Human-level competence is thus
achievable for a fundamental perceptual capability from human-like perceptual
experience (human-like in both amount and type) with extremely generic learning
algorithms and architectures and without any substantive inductive biases.

Are modern self-supervised learning (SSL) algorithms as data efficient as humans when it comes to
learning powerful internal models of the world? Here, we address this question with respect to a
fundamental visual capability, namely real-world visual object recognition. A direct comparison of
the data efficiency of deep learning models trained with SSL algorithms vs. humans is challenging
for a number of reasons:

– Mismatch in training data: These models are typically trained with a very different kind of
visual data from humans, both in terms of amount and type of data.

– Mismatch in model size: They are typically much smaller in size than the human brain, or even
just the visual areas in the human brain, e.g. comparing the number of parameters in a model with
the number of synapses in a human brain.

– Mismatch in input size: They typically operate on much smaller (lower dimensional) inputs than
the human brain works with, e.g. comparing typical image sizes used in computer vision with the
number of photoreceptors in the human retina.

We perform a scaling experiment to address these mismatches and ask if current SSL algorithms can
reach human-level visual object recognition capabilities at sub-human scales of (human-like) data
size, model size, and input size. An earlier work (Orhan, 2021) considered only data scaling (fixing
the model size and input size to relatively small values) and concluded that current SSL algorithms
may be orders of magnitude less data efficient than humans. Here, we consider the simultaneous
scaling of all three factors and reach a different conclusion (we also train our models on a roughly
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4× larger set of human-like videos in the current experiments). Code and models are available from
the following public repository: https://github.com/eminorhan/humanlike-vits.

Training data: The full training data consists of a combination of six video datasets totaling 4971
hours of human-like video. The videos are “human-like” in two prominent aspects: (i) most of the
videos are naturalistic, egocentric headcam videos recorded from the perspective of adult or child
camera wearers during the course of their daily lives; (ii) they are temporally extended, continuous
videos typically lasting tens of minutes to hours long in duration (unlike common video datasets in
computer vision, which typically contain much shorter videos). Further details about the individual
datasets can be found in the Appendix. The videos are temporally subsampled at the rate of 1 fps,
yielding over 17M frames in total for the full dataset.

Our training data is a combination of multiple video datasets collected from multiple individuals,
therefore it does not represent the visual experiences of a single individual, which creates a mismatch
between the statistics of our training data and the typical visual experiences of a single person. How-
ever, a recent work (Orhan and Lake, 2023) found that models trained on length-matched subsets
of different natural video datasets with similar temporal characteristics (long, continuous videos)
perform remarkably similarly in downstream evaluation tasks, including in ImageNet and out-of-
distribution versions of ImageNet (two benchmarks for visual object recognition we focus on in this
work), despite notable qualitative differences between these video datasets in terms of both con-
tent and style.1 This result suggests that natural video datasets with similar temporal characteristics
may be, by and large, interchangeable with each other insofar as their effect on overall performance
in downstream evaluation tasks is concerned (this does not necessarily preclude more fine-grained
differences between models trained on different datasets or different subsets of the same dataset).

To determine the scaling of object recognition performance with the amount of human-like visual
data used during self-supervised pretraining, we train models on the entire dataset and on contin-
uously sampled random subsets of it (Orhan, 2021). Specifically, we train models on 100%, 10%,
1%, 0.1%, and 0.01% of the entire dataset (all sampled as continuous chunks or segments of video).
These subsets contain from roughly 5000 to 0.5 hours of human-like video respectively, thus cover-
ing a 10000-fold range in data size. Since the subset selection is stochastic, we repeat it three times
for each data size. This gives us a total of 13 different datasets (1 entire data + 4 proper subsets × 3
repeats), on which we train all of our models.

Models: We exclusively use vision transformer (ViT) models in our experiments (Dosovitskiy et al.,
2020). We consider four standard sizes for our models: ViT-S, ViT-B, ViT-L, and ViT-H, all with
14×14 patches. These models respectively have 22M, 87M, 304M, and 633M parameters, covering
a 29-fold range in model size from the smallest to the largest model. For the image resolutions, we
consider three different spatial resolutions: 224× 224 (0.05 MP), 448×448 (0.2 MP), and 476×476
pixels (0.23 MP), covering a roughly 4.5-fold range in spatial resolution (number of pixels). Due to
computational costs, we use the larger two resolutions with the ViT-H model only. This gives us a
total of 6 different model architectures (ViT-S/14, ViT-B/14, ViT-L/14, ViT-H/14, ViT-H/14@448,
and ViT-H/14@476), which we train on each of the 13 datasets described in the previous paragraph
for a grand total of 6 × 13 = 78 pretrained models.

SSL algorithm: We use masked autoencoders (MAEs) as our SSL algorithm of choice (He et al.,
2022). MAEs have a number of advantages over alternative self-supervised visual representation
learning algorithms that are relevant for our purposes in this work. First, unlike most other visual
SSL algorithms, they require very minimal data augmentation. He et al. (2022) show that using
only random crops works well in MAEs. This is advantageous for our purposes, because heavy data
augmentations used in other SSL algorithms make the training data less human-like. Second, MAEs
work well with very high masking ratios (we use a masking ratio of 80%). Because only visible
(unmasked) patches are passed through the encoder in MAEs, we can train much bigger models
with larger image sizes than we would be able to do with other algorithms on a modest academic
compute budget. We use a standard training configuration adapted from the original MAE codebase.

Results: We use validation accuracy on ImageNet (Russakovsky et al., 2015) and OOD accuracy on
out-of-distribution (OOD) versions of ImageNet (Geirhos et al., 2021) as our proxies for real-world
visual object recognition capacity. These benchmarks emphasize both accuracy and robustness of

1This result is somewhat reminiscent of the robust emergence of general linguistic capabilities in children
despite large differences in the amount and type of linguistic input they receive during their development both
across and within cultures (Cristia et al., 2019; Bergelson et al., 2019).
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Figure 1: Top-5 validation accuracy on ImageNet as a function of the amount of human-like video
data used for self-supervised pretraining. Human-level performance is indicated by the red zone
at the top (>90%). For reference, the developmentally relevant time scale of 10 years is indicated
by the vertical dashed line. Different colors correspond to six different models identified in the
legend. The solid lines represent the fits to Equation 1. Based on these fits, projected accuracies
under two hypothetical scenarios are shown by the ⋆ symbols (see Table 1 for a specification of
these scenarios). a shows the results for the stringent finetuning condition (models finetuned with
∼1% of ImageNet) and b shows the results for the more permissive finetuning condition (models
finetuned with 2% of ImageNet).

Scenario n (years) d (params) r (pixels) Acc (∼1%) Acc (2%)
Reference (actual) 0.6 0.6B 476×476 59.8 71.4

Scenario A (×2 proj.) 1.2 1.3B 672×672 71.8 83.1
Scenario B (×4 proj.) 2.3 2.5B 952×952 83.5 93.6

Table 1: Validation accuracy on ImageNet under an actual reference scenario and two projections
based on the fits to Equation 1. The last two columns show the actual and projected accuracy under
the stringent (∼1%) and permissive (2%) finetuning conditions respectively.

visual object recognition for real-world objects. Importantly, both benchmarks come with human
performance estimates: for ImageNet, we consider 90% top-5 accuracy as a reasonable lower-bound
on human performance based on the human experiments in Russakovsky et al. (2015); for the OOD
versions of ImageNet, the average top-1 accuracy for humans is reported to be 72.3% in Geirhos
et al. (2021).

For both benchmarks, we measure the performance of the pretrained models after few-shot super-
vised finetuning. We evaluate the models under two different finetuning conditions: (i) a stringent
setting that exactly replicates the human experiments in Russakovsky et al. (2015) and Geirhos et al.
(2021); and (ii) a more permissive setting that uses a small amount of additional labeled examples
for supervised finetuning. The more permissive setting is intended to partially account for any prior
(supervised) exposure humans might have had to ImageNet categories before the experiment. In
the ImageNet benchmark, the strict setting uses exactly 13000 labeled examples from the ImageNet
training set (∼1% of the training set) for finetuning; the more permissive setting uses 2% of the
training set for finetuning. In the OOD ImageNet benchmark, the strict setting only uses the 321
labeled practice images used by Geirhos et al. (2021) to familiarize the human participants in their
experiments with the stimuli and the task during an initial practice session; the more permissive
setting additionally uses 2% of the ImageNet training set for supervised finetuning.

Figure 1 shows the results of our scaling experiment on ImageNet. We model the effects of data size,
model size, and image resolution on object recognition accuracy as a simple polynomial function in
log space:

accuracy = (αn log n+ βn)︸ ︷︷ ︸
data scaling

(αd log d+ βd)︸ ︷︷ ︸
model size scaling

(αr log r + βr)︸ ︷︷ ︸
image res. scaling

(1)
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Figure 2: Results for the OOD ImageNet benchmark (figure description similar to Figure 1 above).

Scenario n (years) d (params) r (pixels) Acc (str.) Acc (perm.)
Reference (actual) 0.6 0.6B 476×476 28.0 39.0

Scenario C (×5 proj.) 2.8 3.2B 1064×1064 34.7 52.7
Scenario D (×25 proj.) 14.2 15.8B 2380×2380 45.0 70.6

Table 2: OOD accuracy on the OOD ImageNet benchmark under an actual reference scenario and
two projections based on the fits to Equation 1. The last two columns show the actual and projected
accuracy under the stringent (finetuning with practice images only) and permissive (finetuning with
2% of ImageNet + practice images) conditions respectively.

where n is the amount of human-like video data used for self-supervised pretraining, d is the model
size (number of parameters), and r is the image resolution (number of pixels). We thus fit 78 data
points in each condition with the 6 parameters of this log-polynomial model. The Appendix contains
results with two alternative parametric scaling functions. The results with these alternative scaling
functions are broadly consistent with the results presented here in the main text using the scaling
function in Equation 1.

Based on these fits, Table 1 describes three scenarios: (i) an actual reference scenario that corre-
sponds to the largest and most performant model we have trained, i.e. a ViT-H/14 model trained
with all ∼5K hours of our human-like video dataset with a spatial resolution of 476×476 pixels;
(ii) a hypothetical scenario A where we double (×2) each of n, d, r with respect to the reference
scenario; (iii) a hypothetical scenario B where we quadruple (×4) each of n, d, r with respect to
the reference scenario. Table 1 shows the actual and projected object recognition accuracy for each
of these scenarios (actual accuracy for the reference scenario and projected accuracy based on the
model fits for the hypothetical scenarios). In the hypothetical scenario B (×4 projection) and under
the more permissive finetuning condition (finetuning with 2% of ImageNet), the projected accuracy
already exceeds the 90% top-5 accuracy we have set as the lower bound on human-level accuracy
on ImageNet. This result is quite encouraging, since the increases in data size, model size, and
image resolution required under this scenario are relatively modest: i.e. this scenario only requires a
2.5B parameter ViT model trained with ∼20K hours (2.3 years) of human-like video with a spatial
resolution of 952×952 pixels.

Figure 2 shows the results of our scaling experiment on the OOD ImageNet benchmark. Similar
to the case of ImageNet above, Table 2 describes an actual reference scenario and two hypothetical
projections (a ×5 projection and a ×25 projection with respect to the reference scenario) based on
the log-polynomial fits to the scaling data and shows the actual and projected OOD accuracies under
these scenarios. In this case, we estimate that n, d, and r need to be scaled up more compared to
the case of ImageNet in order to reach human-level performance, but the ×25 scenario (scenario D)
is projected to achieve human-level OOD accuracy under the permissive finetuning condition and,
with its requirements of 14.2 years of data, a 15.8B parameter model, and a spatial resolution of
2380×2380 pixels (5.7 MP), we believe this scenario is still broadly within the human bounds in all
of n, d, and r. The Appendix contains further discussion of the results.
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Appendix

Comparing deep learning models vs. humans

Model size: A conservative estimate of 10% of the brain dedicated to visual processing and 10K
synapses per neuron suggests an estimate of 100T synapses or connections dedicated to visual pro-
cessing in the human brain. This number is several orders of magnitude larger than the number of
parameters used in current deep learning models.

Input size: The human retina contains roughly 6M color sensitive cone receptors, very tightly
concentrated within a few degrees of visual angle around the fovea (Williamson and Cummins,
1983). By comparison, the average size of an ImageNet image (after resizing) is 310×256 pixels,
or 0.08 megapixels (MP), in the most commonly used preprocessing pipeline today, which is about
two orders of magnitude smaller in spatial resolution.
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Figure 3: Human-like video datasets used
for SSL.

The combined training dataset consists of the follow-
ing video datasets:

Ego4D: Ego4D is a large dataset of egocentric head-
cam videos recorded by 923 unique participants while
performing daily activities (Grauman et al., 2022). The
total length of the videos in Ego4D is about 3670
hours. The dataset can be accessed from this address
after signing a license agreement.

AVA (v2.2): AVA is a dataset of films (Gu et al., 2018).
The dataset comes with rich annotations for parts of
these films. However, we use the entire films (without
annotations) for self-supervised learning in this work.
We use all videos in both trainval and test splits
(299 and 131 videos respectively). The total length of
the videos from this dataset is about 636 hours. The
dataset is publicly accessible from this address.

SAYCam: SAYCam is a large, longitudinal dataset of
headcam videos recorded from the perspective of three young children between the ages of 6 to 32
months (Sullivan et al., 2021). The combined length of the videos from all three children is about
498 hours. Recordings were made approximately once a week for 1-2 hours (usually continuously)
over the course of a 2.5 year period during the early development of the children. This dataset
is not publicly accessible, but researchers affiliated with an institution can apply for access on the
Databrary repository for behavioral science.

Epic-Kitchens: This dataset contains relatively long headcam videos from multiple participants
performing daily culinary chores in their kitchens (Damen et al., 2018). The total length of the
videos in this dataset is about 80 hours. The dataset is publicly accessible from this address.

KrishnaCam: KrishnaCam is a dataset of headcam videos recorded by a graduate student (Singh
et al., 2016). It contains long, continuous, egocentric videos of daily episodes in the life of the
graduate student. The total length of the videos in the dataset is about 70 hours. The dataset is
publicly accessible from this address.

UT Ego: UT Ego contains four continuous, egocentric headcam videos, each 3-5 hours long (Lee
et al., 2012) and is publicly accessible from this address.

Figure 3 shows a breakdown of the individual video datasets in our combined training data together
with their sizes (in hours). By far the biggest contributor to our combined training data is Ego4D
(74%). The private SAYCam dataset constitutes only about 10% of the training data. Therefore, we
expect that those who wish to replicate the experiments in this work using only publicly accessible
data sources should get very similar results to those reported here.
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Figure 4: Results with the alternative scaling function in Equation 2. a and b show the results for
the ImageNet benchmark; c and d show the results for the OOD ImageNet benchmark.

Alternative scaling functions

Figure 4 shows the results with a 10-parameter scaling function of the form:

accuracy = (αnñ
βn + γn)(αdd̃

βd + γd)(αr r̃
βr + γr) + δ (2)

Figure 5 shows the results with an 8-parameter scaling function of the form:

accuracy = αnñ+ αdd̃+ αr r̃ + αndñd̃+ αnrñr̃ + αdrd̃r̃ + αndrñd̃r̃ + γ (3)

where, in both equations, ñ, d̃, r̃ represent n, d, r in the log space: i.e. ñ = log n, d̃ = log d,
and r̃ = log r, respectively. We note that purely additive scaling functions with no multiplicative
interactions between different factors do a poor job of fitting the data, as the data (especially the
OOD accuracy) display a clear multiplicative pattern (see e.g. Figure 2 and panels c-d in Figures 4-
5). This is why we consider more general parametric scaling functions that combine both additive
and multiplicative effects in Equations 1-3.

In Figures 4-5, panels a and b show the results for the ImageNet benchmark, panels c and d show
the results for the OOD ImageNet benchmark under the stringent and permissive finetuning con-
ditions, respectively. The reference scenario and the hypothetical scenarios considered here are
identical to those in the main text. The scaling functions here and in the main text were fit with the
scipy.optimize.minimize function using the adaptive Nelder-Mead optimization method and
the parameters were initialized to small values.
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Figure 5: Results with the alternative scaling function in Equation 3. a and b show the results for
the ImageNet benchmark; c and d show the results for the OOD ImageNet benchmark.

Further discussion

Our results suggest that human-level accuracy and robustness in visual object recognition are achiev-
able from human-like visual experience at sub-human scales of data size, model size, and image
resolution, using highly generic self-supervised learning algorithms and deep learning architectures
without any strong inductive biases. This result is not inconsistent with the earlier work on this
question (Orhan, 2021), which only considered the scaling of data size (fixing the model size and
image resolution to relatively small values). In fact, in the current set of experiments, when we just
consider the data size scaling for the ViT-S/14 model, which is similar in size to the ResNeXt-50
model trained with the DINO algorithm in Orhan (2021), and fix the spatial resolution to 224×224
pixels, we get estimates in the range of 1M-100M years of human-like visual experience in order to
reach human-level accuracy on ImageNet (see the green lines in Figures 1a and 1b). These estimates
are comparable to the estimated range of 1M-1B years reported in Orhan (2021).
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