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Abstract

In research areas with scarce data, representation learning plays a significant
role. This work aims to enhance representation learning for clinical time series
by deriving universal embeddings for clinical features, such as heart rate and
blood pressure. We use self-supervised training paradigms for language models to
learn high-quality clinical feature embeddings, achieving a finer granularity than
existing time-step and patient-level representation learning. We visualize the learnt
embeddings via unsupervised dimension reduction techniques and observe a high
degree of consistency with prior clinical knowledge. We also evaluate the model
performance on the MIMIC-III benchmark and demonstrate the effectiveness of
using clinical feature embeddings. We publish our code online for replication1.

1 Introduction
The wide adoption of the EHR system has engendered an unprecedented availability of patient data,
which serves as a treasure trove for ML researchers. Such data encapsulates a patient’s medical
trajectory, inclusive of their medical history, diagnoses, laboratory tests, and treatment interventions.
Prior ML research [Horn et al., 2020, Xu et al., 2018] primarily aimed at the modification of the
backbone sequence model, mostly employing supervised training approaches for the prediction of
patient-centric problems like in-hospital length-of-stay and mortality rates. Simultaneously, several
studies [Yue et al., 2022, Tonekaboni et al., 2021, Yèche et al., 2021] have successfully applied self-
supervised learning methodologies for the extraction of time-step level or patient-level embeddings in
time series. However, these high-level embeddings are largely confined to the specific datasets upon
which they were trained. Furthermore, the pre-training objectives are mostly focused on contrastive
loss, resulting in a deficit of exploration concerning other predictive objectives. Horn et al. [2020]
and Tipirneni and Reddy [2022] considered time series as a set of observation triplets and got the
feature level embeddings through the aggregation of three embeddings (i.e., time, feature and value).
Both works are confined to the regime of set function learning. Tipirneni and Reddy [2022] also used
an auxiliary self-supervision task for training, but we separate the pre-training and fine-tuning stages
in our work, which makes it convenient for the unsupervised feature analysis. Other related works
are provided in Appendix A.
Our Contribution In this study, we conduct a granular analysis of representation learning for
clinical features such as heart rate and blood pressure. We employ self-supervised training paradigms
for language models to obtain more universally applicable clinical embeddings. Specifically, we adopt
the Continuous Bag of Words (CBOW) model from Word2Vec [Mikolov et al., 2013] and the Masked
Language Model (MLM) from BERT [Devlin et al., 2018]. Experimental analysis demonstrates that
leveraging clinical feature embeddings can improve the performance on downstream tasks. Addition-
ally, the clinical feature embeddings obtained from the language model pre-training paradigms show
a well-structured latent space, from which we can infer established clinical knowledge.

1https://github.com/yuroeth/icu_benchmarks

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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2 Methods

(a) Pipeline of our method. The green box is the pre-training stage, and the orange box represents the fine-tuning
stage.

(b) CBOW (c) MLM

Figure 1: Self-supervised learning framework for clinical time series.

Notations We define the whole dataset from ICU patient stay as {(Xi,yi)|i = 1, 2, ..., N}. Each
Xi is a multivariate time series Xi = [xi,1, ...,xi,T ], where T is the length of the stay i. Each time
step is xi,t = [x

(1)
i,t , ..., x

(d)
i,t ] ∈ Rd, where d is the number of clinical features. Depending on the

specific task, the label yi for patient stay Xi can be a single value yi ∈ R that indicates the state of
the whole patient stay or a vector yi ∈ RT that corresponds to the state of each time step. In the
self-supervised learning stage, we consider each time step xi,t as one sample for the model. For
the ease of expression, we omit the subscript and use x = [x(1), ..., x(d)] instead in the following
explanation of CBOW and MLM models.
CBOW Given a set of clinical features in a certain time step of patient stay x = [x(1), ..., x(d)],
we randomly select one numerical variable x(j) and one categorical variable x(k) to predict. The
variables are first fed into the feature tokenizer [Gorishniy et al., 2021], see Appendix A, which
maps discrete feature values to embedding vectors e = [e(1), ..., e(d)], where e(i) ∈ Rm, and m is
the embedding dimension. Then we sum the embeddings of all variables except the predicted one,
see Figure 1b: e(j)sum =

∑
i ̸=j e

(i) for predicting value x(j) with the mean squared error Lnum =

MSE(Linear(ejsum), x(j)) and e
(k)
sum =

∑
i ̸=k e

(i) for predicting value x(k) with the cross-entropy
loss Lcat = CE(Linear(eksum), x(k)). Finally we add the two losses together L = Lnum + Lcat for
the model update.
MLM Based on the initial embeddings e = [e(1), ..., e(d)] from the Feature Tokenizer [Gorishniy
et al., 2021], we randomly mask the embeddings of one numerical variable e(j) and one categorical
variable e(k), see Figure 1c. Similar to MLM in BERT pre-training [Devlin et al., 2018], we replace
the masked positions with (1) the [MASK] embedding 80% of the time (2) a random vector 10% of the
time (3) the original feature embedding 10% of the time. The processed embeddings are then passed
into the Transformer encoder to get contextual embeddings for each variable f = [f (1), ..., f (d)].
f (j) and f (k) are responsible for predicting the corresponding masked variable value x(j) and x(k)

respectively. Similarly, we use the total loss L = Lnum + Lcat for model update, where Lnum =
MSE(Linear(f (j)), x(j)), Lcat = CE(Linear(f (k)), x(k)).
Downstream Fine-Tuning For the downstream task, our input is a patient stay comprising several
time steps. The learnt embeddings for clinical features at each time step t are pooled to get the
time-step level embeddings: gt = Pool(e(1)t , ..., e

(d)
t ) for CBOW and gt = Pool(f (1)t , ..., f

(d)
t ) for
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MLM. Then we feed gt into the Transformer encoder to get the contextual embeddings for each
time step [h1, ...,hT ] = Transformer([g1, ...,gT ]). For time-step level predictions, we apply a linear
layer for each time step ŷt = Linear(ht). For stay level predictions, we apply a linear layer to the
last time step counted. Subsequently, we compute the task-specific loss function. In our experiments,
we use max pooling to get time-step level embeddings and the cross-entropy loss is adopted for both
tasks.

3 Experiment Setup
Dataset We use MIMIC-III dataset [Johnson et al., 2016] for pre-training and fine-tuning. In
self-supervised pre-training, we discard time steps with missing value rate larger than 80% (i.e. more
than 15 missing values out of 18 features in total). We impute the missing numerical features with the
mean and missing categorical features with the mode from the whole dataset. We evaluate the quality
of our pre-trained clinical embeddings on two tasks: (1) decompensation and (2) patient mortality at
48 hours after admission from MIMIC-III benchmark [Harutyunyan et al., 2019].
Models We consider two baseline models. The first model is the Transformer [Vaswani et al., 2017]
that takes the raw clinical features as input. The second one is the Feature Tokenizer Transformer
(FTT) [Gorishniy et al., 2021] which maps the input clinical variables to the embedding vectors
before passed to the Transformer encoder. For CBOW and MLM, the feature tokenizer is pre-trained
with corresponding self-supervision tasks, as described in Sections 2. The detailed training setup and
choice of hyper-parameters are shown in Appendix B.
Metrics Given that the downstream tasks are significantly unbalanced classification problems, we
use the area under the precision-recall curve (AUPRC) and the area under the receiver operating
characteristics curve (AUROC) as the measurement.

4 Results
Performance on Downstream Task The pre-trained clinical embeddings are evaluated on the
decompensation and mortality prediction tasks from the MIMIC-III benchmark [Harutyunyan et al.,
2019]. From Table 1, we see that FTT, CBOW and MLM models outperform the Transformer
model, demonstrating that feature embeddings are beneficial to clinical predictions. However, CBOW
and MLM can not further improve the performance from the FTT model, which suggests that the
pre-training of clinical embeddings does not necessarily help the downstream task. However, from
the unsupervised feature analysis below, we will see that the pre-trained embeddings have a better
connection with prior clinical knowledge than FTT embeddings.

Task Decompensation Mortality

Metric AUPRC AUROC AUPRC AUROC
Transformer 34.4± 0.4 91.2± 0.1 51.5± 0.6 86.5± 0.3

FTT 36.4± 0.2 91.6± 0.1 53.4± 0.4 85.8± 0.1
CBOW 36.3± 0.4 91.4± 0.1 53.0± 0.5 85.8± 0.3
MLM 36.2± 0.1 91.6± 0.1 53.1± 0.2 86.0± 0.2

Table 1: Performance on two tasks from the MIMIC-III benchmark for different models measured
with AUPRC and AUROC. Mean and standard deviation are reported over three runs.

Unsupervised Feature Analysis For numerical features, artificial feature values are introduced to
the pre-trained feature tokenizer, following which the dimension reduction technique T-SNE [Van der
Maaten and Hinton, 2008] is employed on the resultant artificial output to enable visualization. Given
that the authentic input data is standard normalized (mean = 0, std = 1), we choose (−3 × std),
0, and (3× std) as the artificial inputs. Accordingly, low-level feature embeddings are represented
as −3×Wnum + bnum (▼), middle-level feature embeddings are bnum (•), and high-level feature
embeddings are 3 ×Wnum + bnum (▲). The T-SNE visualizations are depicted in Figure 2. The
mapping of feature names to their abbreviations is in Appendix B. On scrutinizing Figure 2, we find
that several relationships among pre-trained embeddings align with established clinical knowledge.
Both in Figure 2a and Figure 2b, the middle-value feature embeddings (’•’) tend to cluster (see gray
circles), denoting a normal patient state. Further, we observe a proportional relationship between
body temperature and respiratory rate (as well as heart rate in Figure 2b) (see purple rectangles),
indicating that an increase in body temperature would correspondingly elevate the respiratory (and
heart) rate. Additionally, the MLM embeddings reveal a proportionality between diastolic and systolic
blood pressure (see blue rectangles). These correlations are not observed in the embeddings from
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FTT, see Appendix C. However, certain inexplicable correlations exist in the pre-trained embeddings,
e.g. inversely proportional relationship between FIO and OS. The anticipated correlation would
be a direct one, as a higher FIO should theoretically result in a higher OS due to an increase in
oxygen absorption into the bloodstream. The discrepancies between the feature clusters and clinical
knowledge can be attributed to: (1) the learned embeddings not being impeccable for all features, and
(2) the existence of complex interrelationships between different measurements under pathological
or extreme conditions. For categorical features, we directly use W cat + bcat as features of varying
levels and the results are in Appendix C, where we also present the results for other ablation studies.

(a) CBOW

(b) MLM

Figure 2: T-SNE visualization, with the perplexity value set to 15, of numerical feature embeddings
from CBOW and MLM (FTT can be found in Appendix C). Different colors designate the individual
features and shapes their magnitude as explained in Section 4.

5 Conclusion
This work seeks to address the challenges faced in representation learning for clinical time series.
Existing works are mainly targeted at learning time-step level or patient level feature representa-
tions, with a predominant focus on contrastive losses. While improving predictive performance on
downstream tasks, these high-level representations suffer from the confinement to specific datasets
they were trained on. In an attempt to improve the universality and applicability of clinical feature
representations, our study embarks on a granular analysis of representation learning for clinical
features. The primary contributions of our work thus include the derivation of universal clinical
feature embeddings via CBOW and MLM models, evaluation and analysis of the pre-trained embed-
dings, and verification of their effectiveness in performance improvement on downstream tasks and
interpetability. We believe our findings will encourage further works in exploring the design and
application of clinical embeddings.
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A Related Work

Mikolov et al. [2013] devised two distinctive models that enable the projection of words into a
continuous vector space. The Continuous Bag of Words (CBOW) model infers the central word
using its surrounding context, whereas the skip-gram model forecasts the neighboring words given
the central word. Both models proficiently yield superior quality word representations, effectively
capturing both syntactic and semantic word similarities. Subsequent to the advent of the Transformer
model [Vaswani et al., 2017], Devlin et al. [2018] introduced BERT, a language representation model
developed on the core framework of the Transformer encoder. BERT is engineered to generate deep
bidirectional embeddings from a substantial volume of unlabeled text data. Its pre-training tasks
include Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). The MLM task
prompts the model to predict the masked token within its left and right context, while NSP instructs
the model to determine the adjacency of two sentences.

Many studies on time series representation learning focus on obtaining time-step level, stay level
or patient level embeddings. Tonekaboni et al. [2021] proposed Temporal Neighborhood Coding
(TNC) which leverages the local smoothness inherent to the generative process of time series. They
devised a contrastive objective aimed at distinguishing between neighborhood and distant signals.
In later work, Yue et al. [2022] proposed TS2Vec, a contrastive learning framework for learning
representations of time series data in a hierarchical manner. TS2Vec can apply temporal contrast and
instance contrast arbitrarily at each layer of the dilated CNN model. Besides, Yèche et al. [2021]
designed a Neighborhood Contrastive Learning (NCL) framework for online patient monitoring.
NCL incorporates data augmentation techniques for time series data and a novel contrastive objective,
which consists of a Neighbor Alignment objective and a Neighbor Discriminative objective. The
patient stay level embeddings learnt in this manner proved effective on the MIMIC benchmark and
the Physionet 2019 dataset.

For the acquisition of meaningful representations for clinical features, the initial step is to transform
each individual variable into embedding vectors. Gorishniy et al. Gorishniy et al. [2021] summarized
the commonly used model architectures for such vectorization, encompassing MLP, ResNet, and
Feature Tokenizer + Transformer (FT-Transformer). FT-Transformer first projects numerical and cat-
egorical features onto the embedding space respectively, followed by applying a stack of Transformer
layers to the embeddings. Another line of work leverages set function learning for time series [Horn
et al., 2020, Tipirneni and Reddy, 2022]. The set function representation addresses the prevalent
issues in time series data such as missing information and irregular time intervals. Tipirneni and
Reddy [2022] treat time series as a set of observation triplets, defined as (time, feature, value). They
developed a novel Continuous Value Embedding (CVE) mechanism to embed time and value in the
triplet. They also applied self-supervised learning with forecasting as the predictive objective to learn
robust feature-level representations.

B Model Parameters and Experiment Setup

Training setup The pipeline of our method is shown in Figure 1a. In the pre-training stage, we use
the self-supervised objectives CBOW or MLM to learn feature level embeddings. In the fine-tuning
stage, we pool the pre-trained feature level embeddings to get the time-step level embeddings, which
are then encoded by the Transformer model for clinical prediction.
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Figure 3: Feature Tokenizer model from Gorishniy et al. [2021]

batch size LR feature_dim depth heads AUPRC AUROC

8 0.001 64 1 1 36.6± 0.5 89.7± 0.1
8 0.001 64 2 2 35.8± 0.1 89.5± 0.1
8 0.001 128 1 1 36.1± 0.2 89.5± 0.1
8 0.001 128 2 2 34.7± 0.2 89.3± 0.1
8 0.0001 64 1 1 37.9± 0.2 90.1± 0.1
8 0.0001 64 2 2 37.9± 0.2 90.1± 0.1
8 0.0001 128 1 1 37.8± 0.4 90.1± 0.1
8 0.0001 128 2 2 37.7± 0.6 90.0± 0.3
16 0.001 64 1 1 37.0± 0.6 89.9± 0.1
16 0.001 64 2 2 36.8± 0.3 89.7± 0.1
16 0.001 128 1 1 36.5± 0.1 89.8± 0.1
16 0.001 128 2 2 35.0± 1.0 89.5± 0.3
16 0.0001 64 1 1 37.8± 0.1 90.1± 0.1
16 0.0001 64 2 2 37.9± 0.2 90.2± 0.1
16 0.0001 128 1 1 38.4 ± 0.1 90.3 ± 0.0
16 0.0001 128 2 2 38.0± 0.4 90.1± 0.1

Table 2: Random search results for fine-tuning parameters. AUPRC and AUROC is on the validation
set of MIMIC-III decompensation prediction task. We report mean and standard deviation from three
runs.

Module Parameter Value

Fine-Tune

batch size 16
learning rate 0.0001

feature dimension 128
depth 1

num_heads 1
pooling max

CBOW
batch size 256

learning rate 0.01
feature dimension 256

MLM

batch size 512
learning rate 0.0001

feature dimension 128
depth 2

num_heads 1

Table 3: Training Hyper-parameters.
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Abbr. Name

DBP diastolic blood pressure
FIO fraction of inspired oxygen
HR heart rate

MBP mean blood pressure
OS oxygen saturation
RR respiratory rate
SBP systolic blood pressure
Temp temperature
CRR capillary refill rate

GCST Glascow coma scale total
GCSEO Glascow coma scale eye opening
GCSMR Glascow coma scale motor response
GCSVR Glascow coma scale verbal response

Table 4: Clinical feature name abbreviations.

Figure 4: T-SNE visualization, with the perplexity value set to 15, of numerical feature embeddings
from FTT.

C Additional Results

Limited Labeled Data Analysis To further explore the effect of pre-trained feature embeddings on
the decompensation prediction task, we gradually reduce the number of labeled data from 100% to
1% during fine-tuning. The results are shown in Table 5.

Ablation Study on CBOW Besides the traditional CBOW model, we also explored adding infor-
mation from the previous time step to predict current feature values. The results are shown in Table 6.
It turns out that the adapted CBOW pre-training does not improve the downstream task performance.

Additional Explanations Although we observe good alignment between learnt clinical feature
embeddings and prior clinical knowledge, the performance on the decompensation and mortality
prediction tasks is unexpectedly not improved when leveraging the pre-trained embeddings. We
believe it is necessary to conduct a series of experiments on various downstream tasks to see whether
our pre-trained embeddings can help. Besides, the pre-trained clinical embeddings could be combined
with higher-level embeddings (e.g. time-series level or patient-level embeddings) to further improve
performances on downstream tasks.
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(a) FTT (b) CBOW

(c) MLM

Figure 5: T-SNE visualization, with the perplexity value set to 15, of categorical feature embeddings
from FTT, CBOW and MLM.

Labels Models AUPRC AUROC

100%

Transformer 34.4± 0.4 91.2± 0.1
FTT 36.4± 0.2 91.6± 0.1

CBOW 36.3± 0.4 91.4± 0.1
MLM 36.2± 0.1 91.6± 0.1

50%

Transformer 33.1± 0.1 90.8± 0.1
FTT 35.8± 0.3 91.2± 0.1

CBOW 34.8± 0.2 91.1± 0.1
MLM 34.0± 0.5 91.1± 0.1

10%

Transformer 31.2± 0.2 90.0± 0.1
FTT 31.3± 0.3 89.8± 0.5

CBOW 28.9± 0.6 88.6± 0.2
MLM 31.3± 0.3 89.4± 0.1

1%

Transformer 22.2± 1.0 85.5± 1.0
FTT 8.7± 7.0 63.2± 18.5

CBOW 19.1± 1.8 83.6± 0.4
MLM 11.2± 1.0 78.4± 2.5

Table 5: Performance on the decompensation task for different models with decreasing labeled data.
Mean and standard deviation are reported over three runs.

Use_previous AUPRC AUROC
False 36.3± 0.4 91.4± 0.1
True 35.8± 0.1 91.4± 0.1

Table 6: Comparing the performance of adapted CBOW objectives on decompensation task.
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