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Abstract

Contrastive learning methods have shown an impressive ability to learn meaningful
representations for image and time series classification. However, these methods are
less effective for time series forecasting, as optimization of instance discrimination
is not directly applicable to predicting the future outcomes from the historical
context. To address these limitations, we propose SimTS, a simple representation
learning approach for improving time series forecasting by learning to predict
the future from the past in the latent space. SimTS exclusively uses positive
pairs and does not depend on negative pairs or specific characteristics of a given
time series. In addition, we show the shortcomings of the common contrastive
learning frameworks used for time series forecasting through a detailed ablation
study. Overall, our work suggests that SimTS is a promising alternative to other
contrastive learning approaches for time series forecasting.

1 Introduction

The field of time series signal processing has recently experienced significant progress [36, 5].
In particular, time series forecasting plays an important role in addressing several practical real-
world applications [14, 6]. Among them, self-supervised learning approaches such as contrastive
learning [33, 34, 30, 14] have shown promise in exploiting these applications and have continually
outperformed supervised approaches [1, 22, 38] in time series forecasting tasks.
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Figure 1: Problems with selecting neg-
ative pairs based on methods proposed
in [33, 34, 30] when cross-instance and
cross-time repeated patterns exist.

However, current instance discrimination [31] based con-
trastive mechanisms may not be sufficient for accurate
forecasting. In contrastive time series classification, the
model aims to learn representations that can differenti-
ate between time series instances. The resulting repre-
sentations contain information that can discriminate well
between different time series instances, making them infor-
mative for classification. Meanwhile, in time series fore-
casting, the objective is to predict future values based on
the past rather than discriminating between instances. The
representations learned through instance discrimination
could not capture the necessary information for accurate
forecasting. Other features, such as the trend, seasonality,
and dependencies within the time series, can be more relevant for forecasting.
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Moreover, contrastive learning relies on semantic preserving data augmentations to create positive
and negative pairs, but finding suitable augmentations for time series forecasting is challenging [18].
As shown in Figure 1, some existing methods [34, 14, 33, 26] assume that the similarity between
segments decreases with increasing time lag, which may not hold for all time series. This can
result in selecting inappropriate negative pairs [24, 19], leading to false repulsion. Other recent
approaches [30, 28, 32] rely on assumptions about time series decomposition (e.g., trends and
seasonality), which may not generalize well to diverse forecasting datasets.

To address these limitations, we propose a Simple Representation Learning Framework for Time
Series Forecasting (SimTS), which is inspired by predictive coding [21, 9]. In particular, we build
upon a siamese network structure [4, 37] and propose key refinements that enable better prediction
performance with a simpler model structure compared to state-of-the-art methods. Specifically, in-
spired by [4, 9, 25], we propose to not use negative pairs. Moreover, we demonstrate that maximizing
the shared information between the representations of history and future time windows is important
for forecasting tasks with representation learning. In our proposed model, we explicitly impose
a constraint that the learned representation of the history should encode as much information as
possible by predicting the latent representation of the future. This mechanism simplifies several
existing approaches and leads to state-of-the-art forecasting results, as thoroughly demonstrated in
this paper.

2 Methods

Given a time series X = [x1, x2, . . . , xT ] ∈ RC×T , where C is the number of features (i.e., variables)
and T denotes the sequence length. Our objective is to learn a latent representation of the history
segment Xh = [x1, x2, . . . , xK ], where 0 < K < T , such that our model can predict the future
segment Xf = [xK+1, xK+2, . . . , xT ] from it.

SimTS aims to learn time series representations by maximizing the similarity between predicted and
encoded latent features for each timestamp. One of our main aims is to design a framework capable
of conforming to inherent characteristics of forecasting tasks. The approach involves designing an
encoder network, denoted as Fθ, which maps historical and future segments to their corresponding
latent representations, Zh and Zf , respectively. The encoder’s objective is to learn an informative
latent representation Zh = Fθ(X

h) = [zh1 , z
h
2 , ..., z

h
K ] ∈ RC′×K that can be used to predict the

latent representation of the future through a prediction network. In SimTS, we simply apply multiple
single-layer CNNs (mslCNN) with different kernel sizes as the encoder to learn multiscale temporal
information.
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Figure 2: Illustration of our proposed
SimTS.

Algorithm 1 SimTS’s PyTorch-like Pseu-
docode

initialize θ, ϕ
given a mini-batch D = {Xi}i∈[1:N ] with
N samples
for X in D do

Xh, Xf = X [:, : K, :], X [:,K :, :]
Zh, Zf = Fθ(X

h), Fθ(X
f )

Ẑf = Gϕ(Z
h[:,K, :])

Ẑf = normalize(Ẑf )
Zf = normalize(Zf ).detach()
L = - (Ẑf · Zf ).mean()
L.backward()
update(Fθ, Gϕ)

end for
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Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.643 0.582 0.794 0.650 0.904 0.702 0.650 0.585 0.784 0.649
ETTh2 1.165 0.798 1.544 0.947 1.869 1.053 1.283 0.851 1.474 0.914
ETTm1 0.393 0.423 0.631 0.554 0.740 0.599 0.419 0.439 0.568 0.521
ETTm2 0.572 0.502 0.652 0.543 0.784 0.608 0.644 0.534 0.686 0.575

Exchange 0.789 0.613 0.835 0.622 0.732 0.583 1.043 0.742 0.928 0.654
Weather 0.424 0.458 0.456 0.476 0.445 0.470 0.430 0.459 1.220 0.837

Avg. 0.664 0.562 0.818 0.632 0.909 0.669 0.746 0.603 0.954 0.692
- We implement TS2Vec and CoST on ETTm2, Exchange, and Weather datasets.
* We reproduce InfoTS results using the code available at openreview.net/forum?id=kxARp2zoqAk.

Table 1: Multivariate forecasting results. The best results are highlighted in bold, and the second-best
results are highlighted with an underline.The performance is measured in mean-squared error (MSE)
and mean-absolute error (MAE).

Figure 2 depicts the overall architecture of SimTS. Our model architecture consists of two paths: the
history encoding path and the future encoding path. The history encoding path takes the history view
Xh and outputs Zh = Fθ(X

h). The future encoding path takes the future view Xf and outputs the
encoded latent representation of the future Zf = Fθ(X

f ) = [zfK+1, z
f
K+2, ..., z

f
T ] ∈ RC′×(T−K).

Inspired by [35], we apply a predictive MLP network Gϕ on the last column of Zh, denoted as zhK ,
to predict the future latent representations: Ẑf = Gϕ(z

h
K) = [ẑfK+1, ẑ

f
K+2, ..., ẑ

f
T ] ∈ RC′×(T−K).

Intuitively, the last column allows the encoder to condense the history information into a summary by
properly choosing the kernel size. The training objective is to attract the predicted future and encoded
future timestamps in the latent space without introducing negative pairs. As the predicted future latent
representation is learned from the latent representation of the history, by forcing the predicted latent
representation of the future to be close to the encoded latent representation of the future, we are forcing
the model to learn a representation of the history that is informative for the future. Therefore, we
regard the encoded Zf and the predicted future representations Ẑf as the positive pair and calculate

the negative cosine similarity between them: Sim(Ẑf , Zf ) = − 1
T−K

∑T
i=K+1

ẑf
i

∥ẑf
i ∥2

· zf
i

∥zf
i ∥2

, where

∥ · ∥2 is l2-norm and Sim(·) is the average cosine similarity of all time steps.

Empirically, we witness better performance when applying a stop-gradient (sg) operation [4, 37] to
the future encoding path in our model. With stop-gradient, the loss is:

Lθ,ϕ(X
h, Xf ) = Sim

(
Gϕ

(
Fθ(X

h)
)
, Fsg(θ)(X

f )
)
= Sim(Ẑf , sg(Zf )) (1)

The loss in definition (1) is for one sample X = [Xh, Xf ] and can be adapted for a mini-batch
D = {Xh

i , X
f
i }i∈[1:N ], that is,

Lθ,ϕ(D) =
1

N

N∑
i=1

Lθ,ϕ(X
h
i , X

f
i ), (2)

which corresponds to the average loss across all samples in the mini-batch.

3 Results

Table 1 shows that for multivariate time series forecasting. The results is averaged over five different
forecasting lengths for each dataset. The details of results on each forecasting length are shown
in Appendix. SimTS consistently outperforms all representation learning baselines, surpassing the
second-best method, CoST, by 8.2% (MSE) and 4.1% (MAE) across six datasets. Additionally,
when examining the performance on each dataset individually, SimTS performs slightly worse on the
Exchange dataset.

Please note that we have not compared our results to CPC [21] since (1) CPC is not specifically
designed for time series forecasting, and (2) we have outperformed BTSF [32] while BTSF reports
that their model can outperform CPC.
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4 Ablation Study

Negative Samples Negative pairs, if not constructed carefully, could depreciate the model perfor-
mance in terms of representation power. To further demonstrate the influence of negative samples, we
construct negative pairs by following SimCLR [3] to test our model result with and without negative
pairs. We replace the cosine similarity loss in Equation 1 with the loss that is used in [3] and [21]
to consider the negative pairs together with the positive pairs. Table 2 shows the forecasting results
with and without including the negative samples. In particular, it demonstrates that negative samples
generally decrease performance in most of the datasets we tested. These results confirm that adding
negative pairs to our proposed method leads to suboptimal performance. However, this does not mean
that including negative pairs overall is not useful; it simply implies that the current approaches for
constructing negative pairs are inefficient. Thus, future research should be dedicated to coming up
with better ways to construct negative pairs.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SimTS 0.642 0.582 1.165 0.798 0.393 0.423 0.572 0.502 0.789 0.613 0.424 0.458
w/ neg 0.685 0.632 1.544 0.938 0.392 0.441 0.747 0.572 1.405 0.769 0.434 0.468

Table 2: Ablation study of negative samples on multivariate forecasting across ETT datasets.

Stop-Gradient Operation To test the effect of the stop-gradient operation on the overall model
performance, we construct an ablation study reported in [37], as illustrated in Figure 3. As shown
in Table 4, we observe that either the removal of the stop-gradient on the future encoding path
(Figure 3b) or moving the stop-gradient to the history encoding path causes a significant decrease in
performance, supporting our argument that the stop-gradient operation in the future encoding path
leads to optimal performance.
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Figure 3: Ablation study of stop-gradient opera-
tion. (a) SimTS architecture. (b) SimTS without
stop-gradient operation. (c) RevSimTS with stop-
gradient on the history encoding path.

Model SimTS SimTS w/o SG† RevSimTS

MSE MAE MSE MAE MSE MAE

ETTh1 0.642 0.582 0.783 0.663 0.762 0.634
ETTh2 1.165 0.798 2.940 1.490 3.128 1.449
ETTm1 0.393 0.423 0.681 0.609 0.551 0.525
ETTm2 0.572 0.502 1.315 0.863 1.186 0.796
Exchange 0.789 0.613 1.808 1.062 1.398 0.900
Weather 0.424 0.458 0.605 0.592 0.485 0.512
† SimTS without stop-gradient operation

Figure 4: Ablation study of stop-gradient op-
eration on multivariate forecasting across ETT
datasets.

5 Conclusion

This paper proposes SimTS, a simple representation learning framework based on contrastive learning
that does not require negative pairs. We conducted an extensive study to test our proposed model and
compared it to other existing representation learning models for time series forecasting. Our general
aim was to challenge the assumptions and components that are widely used in these models. Our
study reveals that current representation learning methods are not universally applicable to different
types of time series data. Some of the components used in these models might be unnecessary and
can even negatively impact performance in some cases. This means that the performance of existing
models based on contrastive learning for time series forecasting depends highly on the datasets they
are applied to, and careful consideration is necessary when deploying them.

Our proposed model, however, addresses some of the limitations by providing a simplified and
robust contrastive learning model achieving better performance across different datasets compared
to state-of-the-art methods. Moving forward, we plan to extend our framework to handle more
challenging data such as irregular time series, and explore efficient data augmentation methods for
time series forecasting.
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6 Supplementary Material

6.1 Datasets

Our experiments are carried out on six real-world public benchmark datasets. Electricity Trans-
former Temperature (ETT) [38] measures long-term deployment of electric power. It consists of
two hourly-sampled datasets (ETTh) and two 15-minute-sampled datasets (ETTm), collected for two
years and from two different Chinese provinces. Exchange-Rate1 [15] contains the daily exchange
rates of eight foreign countries from 1990 to 2016. Weather2 consists of local climatological data for
almost 1,600 U.S. areas for 4 years. The data is collected every 10 minutes. Each time step contains
11 weather variables and one target feature, ‘Wet Bulb Celsius.’ In univariate forecasting, we only
consider the feature ‘Wet Bulb Celsius’; in multivariate forecasting, all features are included.

Dataset Variable Number Sampling Frequency Total Observations ADF Test Statistic

ETTh1 7 1 Hour 17,420 -5.909
ETTh2 7 1 Hour 17,420 -4.136
ETTm1 7 15 Minutes 69,680 -14.985
ETTm2 7 15 Minutes 69,680 -6.225
Exchange 8 1 Day 7,588 -1.889
Weather 21 10 Minutes 52,695 -26.661
Table 3: Summary of datasets. Smaller ADF test statistic indicates a more stationary dataset.

6.2 Details on baselines

The seven baselines’ descriptions and implementations are listed below. We reproduce the results
of CoST, TS2Vec, TNC, and Informer for dataset ETTm2, Exchange, and Weather. Other results
are taken from [30] and [28]. Unless otherwise stated, we employ the parameters specified in the
respective papers.

CoST [30]: CoST performs season-trend disentanglement to learn seasonal and trend represen-
tations separately by using the Fourier Transform. The final representation for forecasting is
the concatenation of the seasonal and trend representation. We run their code from https:
//github.com/salesforce/CoST.

TS2Vec [34]: TS2Vec designs a hierarchical contrastive learning framework to learn a universal time
series representation. It employs timestep masks as the data augmentation and temporal convolutions
to encode the latent representations. We reproduce their experiments from their publicly available
code: https://github.com/yuezhihan/ts2vec

TNC [26]: TNC is an unsupervised representation learning method that makes sure the latent repre-
sentations from a neighborhood are distinguishable from representations outside the neighborhood.
We use their open source code from https://github.com/sanatonek/TNC_representation_
learning. Following the setup in TS2Vec, we use the casual TCN encoder proposed in TS2Vec to
replace the original encoder in TNC.

Informer [38]: Informer is designed based on the transformer for long sequence time series
forecasting. It consists of three major components: a ProbSparse self-attention mechanism, a
self-attention distilling mechanism, and a generative style decoder. We use their code from
https://github.com/zhouhaoyi/Informer2020

TCN [20]: TCN proposes dilated convolutions for time series data. A stack of ten residual blocks
with a hidden size of 64 is added to the encoder in TS2Vec. Their public source code can be achieved
at https://github.com/locuslab/TCN.

6.3 Experimental setup

To keep a fair comparison, we follow the same setup as in CoST and TS2Vec. We first use our trained
model to obtain the latent representation of the time series, then train a ridge regression model on

1https://github.com/laiguokun/multivariate-time-series-data
2https://www.bgc-jena.mpg.de/wetter/
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the learned latent representation for forecasting, i.e., predicting future L time steps. We divide all
datasets into training, validation, and test sets in the ratio of 6:2:2. Throughout the evaluation stage,
the model parameters are frozen to output representations.

The input time series are projected to a 64-dimensional latent space using a convolutional projector.
The multi-scale convolutions further encode the projected vectors into a 320-dimensional latent space
(i.e., C ′ = 320). We cut the original time series into sub-sequences of length T = 402, where each
sub-sequence serves as a training sample. Within each sample, the first 201 timestamps correspond
to its history view and the subsequent 201 timestamps to its future view. The cosine similarity loss
is optimized using stochastic gradient descent (SGD) optimizer with a learning rate of 0.001, a
momentum of 0.9, and a weight decay of 0.0001. We trained 500 epochs for all datasets with a batch
size of 8.

We set the predicted horizons L ∈ {24, 48, 168, 336, 720} for dataset ETTh1, ETTh2, Exchange,
and Weather. For dataset ETTm1 and ETTm2, we set L ∈ {24, 48, 96, 288, 672}. We select the best
ridge regression model using the validation set and then use it to report the forecasting error on the
test set. Mean-squared-error (MSE) and mean-absolute-error (MAE) are used to evaluate our results.
More details about the experimental setup and training process are included in the appendix, and
codes for reproducing the results will be available upon acceptance.

7 Multiple Single-layer CNN (mslCNN)
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Figure 5: Multi-scale encoder. Composed of a projection layer and a set of parallel 1d convolutions
with kernel size 2i, for i ∈ {0, 1, ...,m}. An averaged pooling layer is added on the top of convolu-
tions.

To learn a meaningful representation, the structure of the encoder network Fθ plays a vital role.
Given the nature of time series, we would like our base encoder Fθ to extract temporal (inter-time)
dependency from local and global patterns. For short-term forecasting, shorter local patterns (i.e.,
motifs) are ideal, whereas, for long-term forecasting, longer sets of global patterns are preferred.
Therefore, we propose to use a convolutional network with multiple filters that have various kernel
sizes, which can extract both global and local patterns.

Figure 5 illustrates the details of the encoder Fθ. First, each time series input is passed through a
convolutional projection layer. The projection layer enables us to project time series into a latent
space [34, 30, 28]. We aim to capture abstract information and consistent intra-time relationships
between features that may not be immediately apparent from the raw data. So that the model can
potentially learn more informative and abstract representations of the raw inputs. Second, for a
time series X with length K, we have m = [log2K] + 1 parallel convolution layers on the top
of the projection layer, and the ith convolution has kernel size 2i, where i ∈ {0, 1, ...,m}. These
different kernel sizes can extract corresponding local/global patterns. Each convolution i takes the
latent features from the projection layer and generates a representation Ẑ(i). The final multi-scale
representation Z are obtained by averaging across Ẑ(0), Ẑ(1), ..., Ẑ(m).

8 Ablation Studies

8.1 Disentanglement Assumption

To demonstrate that the season-trend disentanglement as proposed in CoST [30] may not work well
for different types of datasets, especially on the less stationary data, we conduct an ablation study by
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Datasets Exchange ETTm2 ETTm1 Weather

ADF Test Stat. -1.889 -6.225 -14.985 -26.661

CoST 0.975 0.822 0.492 0.439
CoST w/o SD† 0.899 0.754 0.466 0.440
CoST w/o aug.‡ 0.865 0.986 0.493 0.462
CoST w/ mask§ 1.223 0.664 1.041 0.502

Diff. w/o SD 0.076 ↑ 0.068 ↑ 0.026 ↑ 0.001 ↓
Diff. w/o aug. 0.119 ↑ 0.164 ↓ 0.001 ↓ 0.023 ↑
Diff. w/ mask 0.248 ↓ 0.158 ↑ 0.549 ↓ 0.063 ↓
† Seasonal disentanglement
‡ Discard the augmentations proposed in [30]
§ Timestamp masking proposed in [34]
↑/↓ indicates performance increase/decrease

Table 4: The average multivariate forecasting results when changing the season-trend disentanglement
and data augmentation modules in CoST.

Backbones mslCNN TCN LSTM

MSE MAE MSE MAE MSE MAE

Multivariate 0.688 0.601 0.912 0.674 2.124 0.827
Univariate 0.041 0.220 0.134 0.250 1.750 1.274

Table 5: Ablation study of different backbone architectures on ETT datasets.

removing the season disentanglement in CoST. The results are shown in Table 4. Besides, we adopt
the Augmented Dick-Fuller (ADF) test statistic [7] to measure the degree of stationarity. A smaller
ADF score indicates higher stationarity. We observe that seasonal disentanglement can improve the
forecasting outcomes for the Weather dataset, which exhibits significant stationarity. However, the
seasonal disentanglement impairs predicting ability in less stationary datasets like Exchange and
ETTm2, supporting our claim that the seasonal disentanglement assumption is misleading in some
datasets and lacks generality.

8.2 Data Augmentation for Constructing Views

Data augmentation is a common method to generate positive pairs in contrastive learning. However,
current augmentation methods for time series may impair the performance of forecasting. We conduct
ablation studies to demonstrate the influences of data augmentations. CoST uses three types of
data augmentation: scaling, shifting, and jittering. On the other hand, TS2Vec randomly masks
timestamps in a sample to construct views. Therefore, we implement two ablation experiments for
CoST: (1) eliminating data augmentation and (2) adding random masks. Table 4 shows the results
of the two experiments, where “w/o aug" denotes CoST without its original augmentation methods
and “w/mask" denotes CoST using random masks as augmentation. Our experiments show that the
original data augmentation in CoST can potentially result in lower performances, and adding random
masks impairs performances for most datasets. These findings do not imply that data augmentation
is not effective in general; rather, they demonstrate that finding efficient augmentation techniques
applicable to various time series is challenging, and better methods for augmenting time series data
need to be developed.

8.3 Backbones

First, we examine the importance of our encoder network structure design. To test the contribution of
the convolutional network structure as our encoding network, we substitute the convolutional layers
with the TCN [1] and LSTM [12] networks with comparable parameter sizes. Table 5 shows the
forecasting results on ETT datasets. In both univariate and multivariate forecasting, the convolutional
layer in our model performs better than TCN and LSTM, demonstrating the efficiency of our encoder
for encoding time series representations.
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9 Full Results for Univariate Setting

Methods Ours TS2Vec TNC CoST BTSF InfoTS

Accepted by AAAI 2022 ICLR 2021 ICLR 2022 ICML 2022 AAAI 2023

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.036 0.143 0.039 0.151 0.057 0.184 0.040 0.152 0.098 0.147 0.104 0.254
48 0.054 0.176 0.062 0.189 0.094 0.239 0.060 0.186 0.158 0.319 0.206 0.366

168 0.084 0.216 0.142 0.291 0.171 0.329 0.097 0.236 0.183 0.346 0.462 0.586
336 0.100 0.239 0.160 0.316 0.179 0.345 0.112 0.258 0.222 0.387 0.422 0.564
720 0.126 0.277 0.179 0.345 0.235 0.408 0.148 0.306 0.269 0.435 0.438 0.578

E
T

T
h2

24 0.077 0.206 0.097 0.230 0.097 0.238 0.079 0.207 0.093 0.240 0.109 0.251
48 0.116 0.259 0.124 0.274 0.131 0.281 0.118 0.259 0.155 0.314 0.147 0.302

168 0.191 0.340 0.198 0.355 0.197 0.354 0.189 0.339 0.232 0.389 0.209 0.366
336 0.199 0.354 0.205 0.364 0.207 0.366 0.206 0.360 0.263 0.417 0.237 0.391
720 0.212 0.370 0.208 0.371 0.207 0.370 0.214 0.371 0.277 0.431 0.200 0.367

E
T

T
m

1

24 0.013 0.084 0.016 0.093 0.019 0.103 0.015 0.088 0.030 0.137 0.027 0.127
48 0.024 0.112 0.028 0.126 0.045 0.162 0.025 0.117 0.069 0.203 0.040 0.154
96 0.041 0.143 0.045 0.162 0.054 0.178 0.038 0.147 0.194 0.372 0.097 0.246

288 0.098 0.207 0.095 0.235 0.142 0.290 0.077 0.209 0.401 0.544 0.305 0.455
672 0.117 0.242 0.142 0.290 0.136 0.290 0.113 0.257 0.277 0.431 0.200 0.367

E
T

T
m

2

24 0.022 0.099 0.038 0.139 0.045 0.151 0.027 0.112 0.036 0.141 0.048 0.153
48 0.045 0.149 0.069 0.194 0.080 0.201 0.054 0.159 0.069 0.200 0.063 0.191
96 0.068 0.189 0.089 0.225 0.094 0.229 0.072 0.196 0.095 0.240 0.129 0.265

288 0.160 0.272 0.161 0.306 0.155 0.309 0.153 0.307 0.211 0.367 0.208 0.352
672 0.249 0.334 0.201 0.351 0.197 0.352 0.183 0.329 0.267 0.417 0.222 0.377

E
xc

ha
ng

e

24 0.027 0.128 0.033 0.142 0.082 0.227 0.028 0.128 0.103 0.262 - -
48 0.049 0.169 0.059 0.191 0.116 0.268 0.048 0.169 0.121 0.283 - -

168 0.158 0.314 0.180 0.340 0.275 0.411 0.161 0.319 0.168 0.337 - -
336 0.382 0.488 0.465 0.533 0.579 0.582 0.399 0.497 1.672 1.036 - -
720 1.600 1.016 1.357 0.931 1.570 1.024 1.639 1.044 2.478 1.310 - -

W
ea

th
er

24 0.098 0.214 0.096 0.215 0.102 0.221 0.096 0.213 0.117 0.251 0.109 0.217
48 0.136 0.260 0.140 0.264 0.139 0.264 0.138 0.262 0.178 0.318 0.143 0.269

168 0.120 0.328 0.207 0.335 0.198 0.328 0.207 0.334 0.266 0.398 0.188 0.319
336 0.221 0.349 0.231 0.360 0.215 0.347 0.230 0.356 0.197 0.416 0.192 0.320
720 0.235 0.365 0.233 0.365 0.219 0.353 0.242 0.370 0.359 0.466 0.198 0.329

Avg. 0.169 0.268 0.176 0.289 0.201 0.313 0.174 0.176 0.309 0.385 - -

Table 6: Univariate forecasting results of ETT datasets. The best results are highlighted in bold. L
denotes the predicted horizons of datasets. The performances are measured in mean-squared error
(MSE) and mean-absolute error (MAE).
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10 Full Results for Multivariate Setting

Methods Ours TS2Vec TNC CoST InfoTS∗

Accepted by AAAI 2022 ICLR 2021 ICLR 2022 AAAI 2023

L MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.377 0.422 0.590 0.531 0.708 0.592 0.386 0.429 0.564 0.520
48 0.427 0.454 0.624 0.555 0.749 0.619 0.437 0.464 0.607 0.553

168 0.638 0.577 0.762 0.639 0.884 0.699 0.643 0.582 0.746 0.638
336 0.815 0.685 0.931 0.728 1.020 0.768 0.812 0.679 0.904 0.722
720 0.956 0.771 1.063 0.799 1.157 0.830 0.970 0.771 1.098 0.811

E
T

T
h2

24 0.336 0.434 0.424 0.489 0.612 0.595 0.447 0.502 0.383 0.462
48 0.564 0.571 0.619 0.605 0.840 0.716 0.699 0.637 0.567 0.582

168 1.407 0.926 1.845 1.074 2.359 1.213 1.549 0.982 1.789 1.048
336 1.640 0.996 2.194 1.197 2.782 1.349 1.749 1.042 2.120 1.161
720 1.878 1.065 2.636 1.370 2.753 1.394 1.971 1.092 2.511 1.316

E
T

T
m

1

24 0.232 0.314 0.453 0.444 0.522 0.472 0.246 0.329 0.391 0.408
48 0.311 0.368 0.592 0.521 0.695 0.567 0.381 0.386 0.503 0.475
96 0.360 0.402 0.635 0.554 0.731 0.595 0.378 0.419 0.537 0.503

288 0.450 0.467 0.693 0.597 0.818 0.649 0.472 0.486 0.653 0.579
672 0.612 0.563 0.782 0.653 0.932 0.712 0.620 0.574 0.757 0.642

E
T

T
m

2

24 0.108 0.223 0.180 0.293 0.185 0.297 0.122 0.244 0.213 0.330
48 0.164 0.285 0.244 0.350 0.264 0.360 0.183 0.305 0.283 0.392
96 0.271 0.376 0.360 0.427 0.389 0.458 0.294 0.394 0.360 0.449

288 0.716 0.646 0.723 0.639 0.920 0.788 0.723 0.652 0.830 0.700
672 1.600 0.979 1.753 1.007 2.164 1.135 1.899 1.073 1.745 1.006

E
xc

ha
ng

e

24 0.059 0.172 0.108 0.252 0.105 0.236 0.136 0.291 0.085 0.216
48 0.135 0.265 0.200 0.341 0.162 0.270 0.250 0.387 0.176 0.310

168 0.713 0.635 0.412 0.492 0.397 0.480 0.924 0.762 0.718 0.645
336 1.409 0.938 1.339 0.901 1.008 0.866 1.774 1.063 1.481 0.957
720 1.628 1.056 2.114 1.125 1.989 1.063 2.160 1.209 2.179 1.142

W
ea

th
er

24 0.298 0.359 0.308 0.364 0.320 0.373 0.298 0.360 0.217 0.277
48 0.359 0.410 0.375 0.417 0.380 0.421 0.359 0.411 0.466 0.511

168 0.426 0.461 0.496 0.506 0.479 0.495 0.464 0.491 1.229 0.891
336 0.504 0.520 0.532 0.533 0.505 0.514 0.497 0.491 1.880 1.134
720 0.535 0.542 0.567 0.558 0.543 0.547 0.533 0.542 2.631 1.373

Avg. 0.664 0.562 0.818 0.632 0.909 0.669 0.746 0.603 0.954 0.692
- We implement TS2Vec and CoST on ETTm2, Exchange, and Weather datasets.
* We reproduce InfoTS results using the code available at openreview.net/forum?id=kxARp2zoqAk.

Table 7: Multivariate forecasting results. The best results are highlighted in bold, and the second-
best results are highlighted with an underline. L denotes the predicted horizons of datasets. The
performance is measured in mean-squared error (MSE) and mean-absolute error (MAE).

11 Related Works

Researchers have recently developed numerous deep learning models to address the challenges
of time series forecasting. Traditional models for time series prediction, such as ARIMA [17],
SVM [10], and VAR [2], have been outperformed on many datasets by deep learning models,
including RNN [29], CNN [1] and transformers [27]. TCN [1] introduces dilated convolutions [20]
for time series forecasting, which incorporates dilation factors into conventional CNNs to increase
the receptive field significantly. To improve the effectiveness of long-term time series forecasting,
the conventional transformer is modified and applied to time series: LogTrans [16] suggests the
LogSparse attention; Informer [38] develops the ProbSparse self-attention mechanism to reduce the
computational cost of long-term forecasting.

Recent developments in self-supervised learning have successfully discovered meaningful representa-
tions for images [11, 3] with InfoNCE loss [21]. To get reliable time-series representations, several
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approaches have been investigated. Some studies focus on formulating time segments as contrastive
pairs: ICA [13] investigates non-stationarity in temporal data to find a representation that allows
optimal time segment discrimination; TNC [26] establishes a temporal neighborhood to contrast
between neighboring segments and learn the underlying temporal dependency of non-stationary time
series. However, these methods do not perform as well in forecasting tasks since they focus on
extracting neighborhood features and fail to capture global patterns in time series. Furthermore, some
methods utilize more complicated contrastive learning approaches to learn effective representations
for time series. For example, [8] learns scalable representations for various time series lengths
using contrasting positive, negative, and reference pairs with an innovative triplet loss. TS2Vec [34]
employs hierarchical contrastive learning over time series augmentations, generating representations
for each time step. However, these approaches formulate contrastive learning frameworks as classifi-
cation tasks, which try to learn representations by discriminating time series from different classes
and therefore ignore learning predictive features. Additionally, as time series can be (re-)constructed
by combining trend, season, and noise components [23], there is growing research that uses time
series decomposition in unsupervised learning. CoST [30] encodes disentangled trend and seasonal
representations using contrastive learning. BTSF [32] aggregates time and spectral domain to extract
global information and refine representations. While decomposition-related methods may exhibit
robust performance in certain datasets, they heavily rely on underlying assumptions about the data’s
characteristics and tend to fail when dealing with datasets that lack specific seasonality or trend.
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