
Benchmarking self-supervised video representation
learning

Akash Kumar1† Ashlesha Kumar2 Vibhav Vineet3 Yogesh Singh Rawat1
CRCV, University of Central Florida1 BITS Pilani2 Microsoft Research3

Abstract

Self-supervised learning is an effective way for label-free model pre-training,
especially in the video domain where labeling is expensive. Existing self-supervised
works in the video domain use varying experimental setups to demonstrate their
effectiveness and comparison across approaches becomes challenging with no
standard benchmark. In this work, we first provide a benchmark that enables
a comparison of existing approaches on the same ground. Next, we study five
different aspects of self-supervised learning important for videos; 1) dataset size, 2)
complexity, 3) data distribution, 4) data noise, and, 5) feature analysis. To facilitate
this study, we focus on seven different methods along with seven different network
architectures and perform an extensive set of experiments on 5 different datasets
with an evaluation of two different downstream tasks. We present several interesting
insights from this study which span across different properties of pretraining and
target datasets, pretext-tasks, and model architectures among others. We further put
some of these insights to the real test and propose an approach that requires a limited
amount of training data and outperforms existing state-of-the-art approaches which
use 10x pretraining data. We believe this work will pave the way for researchers
to a better understanding of self-supervised pretext tasks in video representation
learning.

1 Introduction

Deep learning models require a large amount of labeled data for their training. Obtaining annotations
at large-scale needs a lot of effort and it becomes even more challenging as we shift from image
to video domain. There are several interesting directions focusing on this issue such as domain
adaptation [65], knowledge distillation [18], semi-supervised learning [68], self-supervision [28]
and weakly-supervised learning [50], which attempts to rely on the knowledge learned from existing
source datasets and transfer to new target datasets with minimal labels. Among these approaches,
self-supervised learning use pretext task as supervisory signal and does not require any labels on
source datasets which makes it more favorable. 1

In recent years, we have seen great progress in self-supervised learning (SSL) in video domain
[66, 29, 69, 62, 44, 9]. More recently, the focus is more towards context-based learning which
involves modifying input data such that to derive a classification [64, 12, 66, 29], reconstruction
[69, 9] or generative [60, 52, 22, 56, 41] signal which can be used as a learning objective. The
main focus of these works is designing a pretext task that is computationally inexpensive and which
provides a strong supervisory signal such that the model learns meaningful spatio-temporal features.

Despite this great progress, it is non-trivial to compare these approaches against each other due
to a lack of standard protocols. These methods are evaluated under different conditions and there
is no standard benchmark to evaluate the fair effectiveness of these methods. A recent study [55]
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Figure 1: Overview of proposed benchmark. We study five different aspects in this benchmark
study. Starting from left, 1) we show the analysis of effect of dataset size vs training time. As the
dataset size increases, variation in performance decreases even with longer training time, 2) We show
the effect of task complexity (C1, C2, C3 - Different complexities). The bottom figure shows one use
case of how complexity increases for the RotNet task, and, the top figure shows how the performance
varies for the R21D network, 3) With different data distribution shifts, the third sub-figure shows the
impact of target data distribution on the source data, 4) We look into another data distribution shift
due to introduction of noise. We see how non-contrastive tasks are more robust than contrastive ones
even with increasing levels of severity of noise. The bottom part shows an example for each type of
noise. Clips are provided in supplementary, and, 5) Finally, we further analyze whether the features
learn complimentary information. In this sub-figure, we show that using different architectures as
teachers can substantially improve performance even in a low-data regime.
attempts to take a step towards this direction, but it is mainly focused on downstream learning, without
exploring the self-supervision aspect which is one of the main goals in our study. In this work, we
present a benchmark where important self-supervised pre-training parameters are kept consistent
across methods for a fair comparison. With the help of this benchmark, we study several critical
aspects which are important for self-supervised learning; 1) effect of pretraining dataset size, 2) task
complexity, 3) generalization under distribution shift, 4) robustness against data noise, 5) properties
of learned features.

The proposed benchmark includes a large-scale assessment of context-based representative self-
supervised methods for video representation learning. We analyze two different aspects: 1) learning
objective which includes contrastive vs non-contrastive, and 2) data transformation that comprises
three categories namely, spatial, temporal, and spatio-temporal. We study seven different pretext
tasks with seven different model architectures and perform our experiments on five different video
action recognition datasets and evaluate these approaches on two different downstream tasks, action
recognition, and video retrieval.

We observe some interesting insights in this benchmark. Some of the key insights are; 1) Contrastive
tasks are fast learners but are less robust against data noise, 2) there is no benefit of increasing dataset
size for smaller models once model capacity is reached, 3) temporal based pretext tasks are more
difficult to solve than spatial and spatio-temporal, 5) spatio-temporal task can solve the pretext task
independent of data distribution shifts, and finally, 6) we empirically show that these pretext tasks
learn complementary features across factors such as model architecture, dataset distributions, dataset
size, and pretext task.

Our contributions are threefold:
• We present a benchmark for self-supervised video representation learning to compare

different pretext tasks under a similar experimental setup.
• We perform extensive analysis on five important factors for self-supervised learning in

videos; 1) dataset size, 2) task complexity, 3) distribution shift, 4) data noise, and, 5) feature
analysis.

• Finally, we put some of our insights from this study to test and propose a simple approach
that outperforms existing state-of-the-art methods on video action recognition with a limited
amount of pretraining data.

2 Benchmark Analysis Setup

In this section, we share the setup for analysis across the following five aspects in the next subsections.
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Figure 2: Feature analysis overview. This figure shows how knowledge distillation as a tool is
beneficial across multiple scenarios. Brief details for each setup (Left to right): (A) Effect of dataset
size: Teachers (T1, T2, T3) are different architectures for a single subset. (B) Task Complexity:
Teachers are multiple complexities across the same task. (C1, C2, C3 - different complexities as
teachers.) (C) Out-of-Distribution: Models from different source datasets are teachers. (D) Pretext
Tasks: Spatial and temporal task networks are teachers.
Effect of pretraining dataset size: In self-supervised learning, a natural question to ask is whether
dataset size plays any role in the performance of downstream tasks. It is important to study if
the increase in the size of the pretraining dataset will proportionally reciprocate in performance
improvement. Also, a general trend is to train models for a very long duration at the pre-training
stage. We investigate if the longer duration actually impacts the gain in performance. We look across
different stages of training for multiple architectures and across different pretext tasks.
Impact of task complexity: Some of the existing works show that increasing complexity leads
to better representation learning, and if the complexity is decreased, the network will optimize to
suboptimal solutions. We analyze this aspect in more detail with several tasks and different model
architectures.
Effect of data distribution: Existing self-supervised methods perform evaluations on K400 and
UCF101 datasets. Both these datasets fall into the same visual category with heavy appearance bias.
However, we divert our attention towards datasets where the temporal dimension plays an important
role such as SSv2.
Robustness of SSL tasks: In this aspect, we study the robustness qualities of SSL methods against
data noise [24]. We analyze which factors play a key role in the robustness of these methods against
such distribution shifts.
Feature analysis: Finally, we look into feature space and analyze whether the learned representa-
tions are complimentary in nature when models are trained under different protocols.
3 Lessons learned
With all the analysis along studied axes, we learned a few lessons in-between these axes such as: (i)
Contrastive tasks are fast learners but are also most susceptible to noise. (ii) An increase in dataset
size or complexity does not help smaller models in learning better spatio-temporal features but these
features are more robust to noise. (iii) Temporal tasks are relatively more difficult to learn since
looking at the correlation between time of training, increase in dataset size, and complexity, the
performance gain is minimal in each of this axis. It means this category of tasks is actually difficult
to solve. (iv) Spatio-temporal pretext tasks improve with the increase in complexity and dataset size
(if the model permits), and their behavior to learn better spatio-temporal features is independent of
data distribution. Using these lessons, we further do more analysis in feature space. We employ
Knowledge Distiallation (KD) [13] as a tool to use the knowledge from different teachers. In Fig. 2,
we show how KD as tool can help across different axes. We look into two downstream tasks: action
classification and clip retrieval. In Table 1, we show that our model outperforms by a good margin on
UCF101 against single and multi-modal approaches. We got competitive results on HMDB51 with a
score of 51.5% wit only using 30k videos. Observations on Clip retrieval is shared in appendix.

3.1 Surprising Findings

We have multiple inference from different axes of analysis. However, to club a few which are new
and helpful for video self-supervised community, we list down those here:
Dataset size and Training time Dependency: Against the conventional belief that a lot of training
data is a must to achieve the best performance, we demonstrate that beyond a certain amount of training
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Approach Venue NxW/H Backbone Pre-training UCF101 HMDB51

Generative

VIMPAC [53] - 10x256 ViT-L HTM 92.7 65.9
VideoMAE [56] NeurIPS’22 16x224 ViT-B K400 91.3 62.6
VideoMAE ∗ [56] NeurIPS’22 16x112 R21D-18 K400 76.2 45.4

Context

PacePred [64] ECCV’20 16x112 R21D-18 K400 77.1 36.6
TempTrans [27] ECCV’20 16x112 R3D-18 K400 79.3 49.8
STS [61] TPAMI-21 16x112 R21D-18 K400 77.8 40.5
VideoMoCo [41] CVPR’21 16x112 R21D-18 K400 78.7 49.2
RSPNet [9] AAAI’21 16x112 R21D-18 K400 81.1 44.6
TaCo [5] - 16x224 R21D-18 K400 81.8 46.0
TCLR[12] CVIU’22 16x112 R21D-18 K400 88.2 60.0
CVRL† [44] CVPR’21 32x224 R21D-18 K400 92.9 67.9
TransRank [14] CVPR’22 16x112 R21D-18 K200 87.8 60.1

Multi-Modal

AVTS [34] NeurIPS’18 25x224 I3D K400 83.7 53.0
GDT [42] - 32x112 R21D IG65M 95.2 72.8
XDC [3] NeurIPS’20 32x224 R21D K400 84.2 47.1

Ours ∗ - 16x112 R21D-18 K400-30k 97.3 51.5

Table 1: Comparison with previous approaches pre-trained on K400. Ours ( ∗ best performing) is
RSPNet pretrained on a 30k subset of K400. † modified backbone.

data, additional data provides diminishing returns for SSL in terms of performance improvement. This
finding has significant implications, as it allows for a substantial reduction in the training data and
there is almost a 10x reduction in training time which is particularly advantageous in computationally
demanding video processing tasks. Furthermore, we show how KD as a tool, outperforms the original
approach (100% data) using almost 90% less data further optimizing resource utilization by roughly
80%.
Robustness to real-world noise To our surprise, contrastive tasks are more susceptible to noise
than non-contrastive ones. A smaller network tends to be more robust in some scenarios than a
bigger network. We believe these findings are novel and not known to the community as there is no
existing study exploring these aspects and are helpful where robustness is necessary for real-world
deployment.
Complementary knowledge Improvement in performance in the case of KD from different data
distributions and categories of tasks brings out a recipe for a new SSL task. This involves utilizing a
multi-teacher multi-student setup, where each teacher specializes in spatial and temporal tasks and is
trained on a mixture of data sources. Our analysis indicates this would provide a powerful learning
scenario.
Recommendations Looking into several factors, here we provide some recommendations to set up
the recipe for self-supervised learning: 1) Training speed: If training time is a concern, contrastive
tasks can help in reducing the pretraining time. The only downside is, they could be less robust against
data noise. 2) Data distribution: It is always better to use a spatio-temporal pretext task irrespective
of the data distribution. However, if that is not an option, the pretext task should always be aligned
with the nature of the pretraining dataset. 3) Model capacity: If model capacity is limited, there is
no benefit of increasing pretraining dataset size and using complex pretext tasks. 4) Robustness: If
best performance is the goal we should use a non-contrastive as opposed to a contrastive pretext task.
5) Performance: Pretext tasks learn complementary features across model architectures, pretraining
datasets, pretext tasks, and tasks complexity, therefore, this complementary knowledge can be distilled
to obtain strong spatio-temporal features.
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herein are those of the authors and should not be interpreted as necessarily representing the official
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Appendix

Here, we explain things in details about pretext task, architecture setup, provide some more results
and include more visual analysis. We also include tables which we were not able to include in main
paper due to space limitations.

1 Related work

Self-supervised learning There are several works in the domain of self-supervised learning for
video representation learning [28, 49]. These approaches can be grouped into two main categories
on the basis of pretext task: 1) context-based [31, 63, 2, 17, 64, 54, 67, 12, 27, 62, 44, 9, 14, 21, 45],
and 2) cross-modal [43, 47, 1]. Cross-modal approaches use multiple modalities such as audio, video,
optical flow, and camera positions, and rely on consistencies across these modalities. Context-based
learning exploits data transformations to derive supervisory signals for training the model. Context-
based pretraining tasks have evolved a lot in the past few years. Our work explores the domain of
how much variation in learned representations under different transformations. In contrast to other
approaches, context-based approaches exploit the spatial and temporal information independently
by several transformations [39, 17, 66, 6, 64, 44, 62]. Recent works have started to transform the
spatial and temporal domain together [31, 38, 54, 69, 9]. Incorporating multiple modalities improves
performance, but, it’s not available for all datasets, especially large-scale datasets. In this work, we
restrict our focus to single-modality (RGB) approaches.

Self-supervised benchmarking There are some prior efforts focusing on benchmarking self-
supervised learning in the image domain. In [19], the authors provide a detailed analysis of image-
based self-supervised learning approaches and study how dataset size scaling affects the learned
representations. Similarly in [32], the authors analyze how different model architectures play a role
in visual self-supervised learning. In both these works, the authors did not focus on the importance
of various pretext tasks themselves but only showed how certain pretext tasks can be improved.
Therefore, their main focus was on downstream tasks rather than pretext learning. We, on the other
hand, study different pretext tasks and analyze how various aspects affect feature learning. Moreover,
these works are focused on the image domain, whereas we focus on the video domain. In recent
work, [16], a study was performed to better understand unsupervised learning in the video domain,
it basically explored the use of several pre-text tasks from the image domain and applied them to
videos. We are not merely focusing on down-stream tasks and our attention is on the self-supervised
aspect which includes factors such as data subset size, task complexity, dataset distribution, and noise
robustness.

2 Self-supervised configurations

We first describe the pretext tasks used in our study along with their categorization. Then we
discuss the details of this benchmark including network architectures, datasets, downstream tasks and
evaluations.

2.1 Tasks categorization

We analyze two different aspects of video pretext tasks: 1) transformations applied to data, and 2)
learning objectives. Data transformations include, spatial-based (S), temporal-based (T) and spatio-
temporal (ST). Spatial transformations include reshuffling of spatial patches, temporal consistent
data augmentation, or rotation of images/patches. Temporal tasks involve permutation classification
of frames/clip, order verification, clips sampling at different paces, or, contrastive learning from
temporal triplets. Spatio-temporal tasks include those in which we modify both of these parameters
simultaneously. This includes dilated sampling and simultaneous frame reconstruction, shuffling spa-
tial and temporal domains, or, speed prediction, and contrastive visual features. Learning objectives
can be either contrastive [10] or non-contrastive such as [56].

Following this categorization, we select at least two representative pretext tasks from each transfor-
mation category, one contrastive and one non-contrastive. We study the following pretext tasks in
this study; RotNet (Rot) [29], Video Clip Order Prediction (VCOP) [66], Playback Rate Prediction
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(PRP) [69], Spatiotemporal Contrastive Video Representation Learning (CVRL) [44], Temporal
Discriminative Learning (TDL) [62], Relative Speed Perception network (RSPNet) [9], and V-MAE
[56]. In concise summary, 1) RotNet applies geometrical transformation on the data, 2) VCOP learns
the representation by predicting the permutation order, 3) PRP has two branches, discriminative and
generative that concentrate on temporal and spatial aspect respectively, 4) CVRL learns to cluster the
video of the same class with strong temporal coherent augmentations, 5) TDL works on temporal
triplets and minimizes the gap between anchor and positive on the basis of visual content, 6) RSPNet
applies contrastive loss in both spatial and temporal domain, and, 7) V-MAE [56] mask tokens of the
input video and it tries to reconstruct those missing patches using an encoder-decoder architecture.
More details are provided in the supplementary.

2.2 Benchmark details

Datasets: We experiment with two different dataset types, 1) where appearance is more important,
and 2) where time is more important. For appearance based, we use Kinetics-400 [30], UCF101 [51],
and HMDB51 [35], where appearance is more important (recognize activity with a single frame) than
temporal aspect, and for temporal aspect, we use Something Something-V2 [20], where temporal
information plays a significant role (require few frames to recognize activity).

Spatio-temporal architectures We analyze three different network capacities, 1) small-capacity,
2) medium-capacity, and 3) large-capacity. For small capacity, we study the following architectures;
ShuffleNet V1 2.0X [70], SqueezeNet [26], and MobileNet [46]. For medium capacity we focus
on conventional 3D architectures: C3D [57], R3D [23], and, R(2+1)D [58] (R21D); . And, for
big-capacity architectures, we study VideoSwin [37], which is a transformer-based model.

Downstream tasks We show results and analysis on two different downstream tasks - action
recognition and clip retrieval. These two are the most prominent tasks in the field of self-supervised
learning in videos.

Evaluation and analysis We use top-1 accuracy for action recognition which indicates whether the
class prediction is correct or not. Clip retrieval calculates the top-k hits for nearest neighbor search,
where k = {1, 5, 10, 20, 50}. For robustness performance, we calculate the relative robustness score
(Rs) using original accuracy on clean test set (Ac) and perturbed accuracy on noisy test set(Ap) as
Rs =

Ac−Ap

Ac
. We also provide qualitative feature analysis with the help of centered kernel alignment

(CKA) maps [40]. CKA maps illustrate the model’s hidden representations, finding characteristic
block structures in models. There are two dominant properties of CKA maps: 1) Feature similarity:
Lighter regions in map indicate more similar features between layers than darker regions. 2) Grid
patterns: Two main patterns stand out, a staggering grid, which indicates models are capable of
learning more, and, distinctive light/dark block patterns meaning the network reached its saturation
point.

3 Benchmark analysis

In this section, first, we perform some preliminary experiments to compare each pretext task under
identical conditions. Then, we further perform analysis across the following five aspects in the next
subsections.

Effect of pretraining dataset size: In self-supervised learning, a natural question to ask is whether
dataset size plays any role in the performance of downstream tasks. It is important to study if
the increase in the size of the pretraining dataset will proportionally reciprocate in performance
improvement. Also, a general trend is to train models for a very long duration at the pre-training
stage. We investigate if the longer duration actually impacts the gain in performance. We look across
different stages of training for multiple architectures and across different pretext tasks.

Impact of task complexity: Some of the existing works show that increasing complexity leads
to better representation learning, and if the complexity is decreased, the network will optimize to
suboptimal solutions. We analyze this aspect in more detail with several tasks and different model
architectures.
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Figure 1: Architecture Performance Analysis: Variation in performance for different architectures.
X-axis shows the relative floating point operations and Y-axis shows the Top-1 Accuracy.

Effect of data distribution: Existing self-supervised methods perform evaluations on K400 and
UCF101 datasets. Both these datasets fall into the same visual category with heavy appearance bias.
However, we divert our attention towards datasets where the temporal dimension plays an important
role such as SSv2.

Robustness of SSL tasks: In this aspect, we study the robustness qualities of SSL methods against
data noise [24]. We analyze which factors play a key role in the robustness of these methods against
such distribution shifts.

Feature analysis: Finally, we look into feature space and analyze whether the learned representa-
tions are complimentary in nature when models are trained under different protocols.

3.1 Preliminary Experiments

First, we perform some preliminary experiments to analyze different architecture backbones, clip
length, and evaluation with linear probing vs finetuning, and, finally layout discussion on the
evaluation of different pretext tasks under the same constraints.

Backbone architectures: Looking into smaller and medium capacity networks in Figure 1, Shuf-
fleNet outperforms among smaller networks, whereas considering the trade-off between the number
of trainable parameters and performance R21D performs better in medium network category. Among
big capacity networks, we look into a few recent end-to-end video-based transformer networks
[4, 15, 7, 37], and Video Swin [37] outperforms other architectures by a margin of 1-3% on K400.

Clip length: Different pretext tasks take 16 or 32 frames as input clip length. We experimented with
both 16 and 32 clips length and observe that 32 frames mostly provide better performance. However,
to maintain consistency with most of the approaches and reduce computation costs, we use 16 frames
in our experiments.

Linear probe vs finetuning: In the linear probe, we train only the linear layers attached for
classification while freezing other network weights, whereas in finetuning the whole network is
trained end-to-end. In our preliminary experiments we use Kinetics-400 for pretraining and UCF-101
as the target dataset. On several pretext tasks, we observe an average drop of 25% (ShuffleNet) and
40% (R21D) in performance when comparing linear probe with finetuning. However, we do not

3



Non-Contrastive Contrastive
Rot VCOP PRP V-MAE CVRL TDL RSP
(S) (T) (ST) (ST) (S) (T) (ST)

Shuffle 16.6 40.8 21.9 - 62.3 12.4 68.8
R21D 41.2 51.5 46.2 76.2 61.2 31.7 78.0

Reported ∗ 72.1 68.4 72.4 91.3 94.4 84.9 93.7
Table 1: Comparison across different pretext tasks pre-train on K400-50k subset and finetuned on
UCF101 dataset against reported results in the original paper.

Non-Contrastive Contrastive
Subset Rot VCOP PRP CVRL TDL RSPNet

10k 37.6 46.3 17.5 55.9 31.1 70.9
30k 36.2 50.4 42.7 56.9 30.9 76.4
50k 41.2 51.5 46.2 61.2 30.2 78.0

Table 2: Evaluation of different pretext tasks on different subset size on R21D network.

usually observe this significant drop when both the pretraining and target datasets are the same [49].
It indicates that finetuning is important for the model to adapt to downstream dataset in case it is
different. Therefore, some of the existing works [55] rely on finetuning when the source and target
datasets are different. Since we are interested in cross-dataset learning, we perform finetuning on all
our downstream datasets.

Pretext tasks evaluation: A comparison of pretext tasks on two different backbones is shown in
Table 1. We observe that most of the contrastive tasks outperform non-contrastive tasks when they
are trained under different constraints (row 3). However, that is not the case when we compare them
under the same constraints (row 1-2). Similarly, spatial and spatio-temporal tasks have a similar
performance from reported results. However, spatio-temporal pretext tasks outperform spatial ones
by a large margin when we keep pre-training constraints similar. This supports our hypothesis that it
is important to experiment under similar constraints for a fair evaluation of different approaches.

3.2 Effect of dataset-size

We first analyze the effects of pre-training data size variation. The network trains on four subsets of
the K400 dataset: 10,000 (10k), 30,000 (30k), 50,000 (50k), and 100,000 (100k). The number of
videos per class is the same. The smaller pre-training dataset is a subset of the bigger pre-training
dataset size (i.e. 10k ⊂ 30k and so on). We look into three aspects regarding dependence on pre-train
subset size: a) behavior of different pretext tasks with the increase in pre-train dataset subset, b)
performance across the different capacity of backbones, and, c) the effect of training time across
different pretext tasks.

Observations: From Table 2, we observe that apart from TDL each pretext task performance
improves with an increase in subset size. If we look into specific pretext task transformation category
(Table 2), the most gain with an increase in data is for spatio-temporal tasks ( 13%), whereas the least
gain is for temporal pretext tasks ( 3%). Looking across different architectures in Figure 2, there’s
a minimal gain for R21D and ShuffleNet beyond increasing dataset size from 30k subset against
VideoSwin which improves with an increase in dataset size which relates to similar behavior like
image models discussed in [19]. Analyzing the effect of the duration of training across different
pretext tasks, in Table 3, the performance gain is minimal (<1.5%) after training for more than
100 epochs. Comparing contrastive and non-contrastive approaches, the gain in contrastive-based
approaches is on average 1% compared to 5% for non-contrastive tasks beyond 100 epochs of training.

Inference: (i) Spatio-temporal pretext tasks improve most with increment in dataset size and are most
dependent on it than others since it involves transformation along both axes: appearance (spatial)
and motion (temporal). (ii) Benefit of more training data reaches its limitation based on model
capacity. Smaller networks saturate according to their learning capability. (iii) Contrastive tasks
are fast learners against non-contrastive and reach their potential in a relatively shorter duration of
training.
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Figure 2: Left: Dataset subset performance for three different architectures on RSPNet pretext task
(x-axis: subset size, y-axis: Top-1 Accuracy). Here, 10 means 10k dataset subset, 30 means 30k, and
so on. Right: CKA maps for RSPNet on different subsets with R21D backbone.

Non-Contrastive Contrastive
Epochs Rot VCOP PRP CVRL TDL RSPNet

50 35.4 52.2 24.1 55.7 32.1 75.0
100 37.3 52.3 34.8 58.5 31.3 76.1
150 40.7 51.3 46.7 60.2 31.5 76.5
200 40.9 52.8 45.0 60.5 30.2 77.4

Table 3: Performance at different stages of training for all pretext tasks on R21D with 50k pre-
training subset size.

TC↓ S T ST
C1 20.1/48.3 41.6/56.8 24.2/38.9
C2 20.2/58.3 41.8/54.8 18.1/44.4
C3 16.6/41.2 40.6/55.6 21.9/46.2

Table 4: Complexity Variation. TC: Task complexity. Results are shown on UCF101 with Shuf-
fleNet/R21D backbone.

3.3 Impact of change in task complexity

Next, we study the effect of task complexity. In this aspect, we analyze only non-contrastive tasks as
it is non-trivial to define task complexity for contrastive-based approaches. We analyze three different
complexities (C1, C2, C3) for each task. The variation in complexity for each task is briefly discussed
as follows: a) RotNet: vary the number of rotations between 2 to 4, b) VCOP: increase the number of
shuffle clips from 3 to 5, and, c) PRP: modify the dilation sampling rates from 2 to 4 classes. We
investigate the following aspects here: a) does an increase in complexity means better spatio-temporal
features learned at the pre-training stage? b) does the capacity of architecture plays any role?

Observations: From Table 4, comparing across rows we observe ShuffleNet performance doesn’t
improve much or degrade significantly if the complexity of the task is increased. CKA maps show
the structure transforms from staggering grids to a multi-block pattern indicating saturation with an
increase in complexity. In between different categories of transformation, performance improves
with complexity for the bigger model in the case of the spatio-temporal task. Between ShuffleNet
and R21D, R21D gives staggering grids against dark block patterns for ShuffleNet which shows the
model can still learn better features. CKA maps are provided in the supplementary.

Inference: (i) Increase in pretext task complexity doesn’t always reciprocate to better spatio-
temporal feature learning. It is dependent on the pretext task and also the model capacity. (ii) If
higher complexity improves features learning, the model should also have the capacity, otherwise the
task will be too difficult for the model to learn meaningful representations.
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(a) UCF101

Figure 3: Effect of different dataset distributions: Pretraining on K400 and SSv2 with 30k
subset size, finetuning on UCF101 using R21D network. Here, S, T, and ST mean spatial(CVRL),
temporal(VCOP), and, spatio-temporal(RSPNet) respectively. X-axis shows source dataset and Y-axis
shows Top-1 accuracy.

Figure 4: Performance with different types of noises. ShuffleNet and R21D scores are shown by blue
and red lines respectively.

3.4 Effect of dataset distribution

Shifting our focus to datasets that have more hidden cues in the temporal aspect, we add pre-
training on SSv2 to our experiments. We answer the following questions in this section; a) does the
categorization of pretext-task matter on source (pre-training) and target (downstream) datasets? b)
what is the impact of source dataset when the pretext task focuses only on a single task either spatial
or temporal?

Observations: Looking into Figure 3, we observe that spatio-temporal pretext task outperforms
other pretext tasks on both target (downstream) datasets UCF101 and DV48 by a margin of 15-40%
and 10-13% respectively whether the source datasets is K400 or SSv2. Comparing, spatial and
temporal-based pretext tasks, we see that they are majorly dependent on source datasets. Looking
at Figure 3, performance is better on both target datasets if source dataset has the same underlying
properties as the pre-text task is trying to learn. Furthermore, the spatial task is more dependent on
the source dataset, since the relative drop on both UCF101 and DV48 for CVRL is significant (40%
and 30% respectively) when the source dataset is SSv2 against K400. However, in the case of the
temporal task, the drop is 15% and 10% respectively when the source dataset is K400 against SSv2.

Inference: (i) Spatio-temporal pretext task learns better features independent of source and target
data distribution. (ii) Spatial and temporal pre-text tasks are better learners when source data
distribution belongs to spatial and temporal respectively. (iii) Temporal pretext task prevails when
target data is temporal, whereas, in the case of spatial, tasks are dependent upon source data
distribution. Spatial pretext doesn’t gain much information if source data is SSv2 (temporal) since
motion plays a major role, but the temporal task still learns well from K400 (appearance).

3.5 Robustness of SSL tasks

Similar to OOD datasets, introducing noise also shifts the distribution of datasets. We evaluate
models on different types of noises introduced in [48] with different severity levels on the UCF101
test dataset. Specifically, we probe into four different types of appearance-based noises: Gaussian,
Shot, Impulse, and Speckle [24]. Here we look into the following aspects: a) how robust different
categorizations of pretext tasks are? b) is the network’s architecture dependent on the noise in the
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Non-Contrastive Contrastive
Rot VCOP PRP CVRL TDL RSP Avg.

R21D 10.7 19.0 70.1 78.4 26.7 68.8 45.6
Shuffle 28.3 28.4 22.8 51.9 43.5 28.6 33.9

Table 5: Robustness analysis on the relative decrease in % performance across different pretext tasks
on noisy UCF101 dataset. The performance is averaged over 4 noises.

(a) UCF101 (b) HMDB51

Figure 5: Knowledge distillation using teachers trained on multiple subset sizes on RSPNet. Student:
ShuffleNet UCF101/HMDB51. Here T1 is Teacher-1 (shufflenet) and T2 is teacher-2 (R21D).

dataset? In the main paper, we only discuss one severity level and have provided a detailed analysis
of multiple severity levels in the supplementary.

Observations: From Table 5, we observe that the relative drop in performance for contrastive tasks
is more than non-contrastive tasks for both R21D and ShuffleNet backbone. The most and least
robust models are RotNet-R21D and PRP-R21D with 10.7% and 70.1% relative decrease. From
Figure 4, we can observe looking across different severity levels for each type of noise ShuffleNet is
more robust than R21D.

Inference: (i) Contrastive approaches are less robust to noise when compared with non-contrastive
approaches. (ii) ShuffleNet outperforms R21D in robustness few scenarios despite being smaller in
terms of a number of parameters.

3.6 Feature analysis

We further analyze the learned features by these pretext tasks under different configurations. We
specifically focus on understanding the complementary nature of these features. We employ knowl-
edge distillation [13] as a tool to study this aspect. It is based on the idea that distilled knowledge from
the ensemble of teacher networks makes the student model stronger. We use our benchmark models
as teachers in different combinations to analyze whether a student learns orthogonal information
on four different axes: 1) different architectures as the teacher within a dataset size, 2) teachers
with different complexities in a pretext task, 3) models from multiple source datasets, and, 4) same
architecture as teachers from multiple pretext tasks. Figure 2 summarizes the observations for each
aspect.

Observations: Although teacher network performance improves with subset, gain in complemen-
tary information reduces beyond 30k (Fig. 5). However, distillation does help in the reduction
of training time with a significant improvement in performance which is evident from Fig. 2(a).
Independent of the pretext tasks category smaller architecture learns complimentary information and
outperforms the teacher whereas bigger architecture it’s task-dependent. Irrespective of task category
whether transformation-based or contrastive, each task learns corresponding features from both
source datasets and outperforms the teacher. Student network outperforms standalone spatio-temporal
network performance in both contrastive and non-contrastive domains.
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(a) UCF101 (b) HMDB51

Figure 6: Top@5 Clip Retrieval - R21D on a) UCF101 and b) HMDB51, pre-trained on K400 and
SSv2 - 30k subset.

Inference: (i) Knowledge can be distilled from different architectures for a given subset size, (ii)
Knowledge from different source datasets brings in complementary information, and (iii) Orthogonal
features are learned across different categories of pretext tasks.

4 Lessons learned

With all the analysis along studied axes, we learned a few lessons in-between these axes such as: (i)
Contrastive tasks are fast learners but are also most susceptible to noise. (ii) An increase in dataset
size or complexity does not help smaller models in learning better spatio-temporal features but these
features are more robust to noise. (iii) Temporal tasks are relatively more difficult to learn since
looking at the correlation between time of training, increase in dataset size, and complexity, the
performance gain is minimal in each of this axis. It means this category of tasks is actually difficult
to solve. (iv) Spatio-temporal pretext tasks improve with the increase in complexity and dataset size
(if the model permits), and their behavior to learn better spatio-temporal features is independent of
data distribution.

Using these lessons, we further do more analysis in feature space. From there, we observe within
an axis of comparison how models learn orthogonal information. Based on those observations, we
analyze if we can push the performance for downstream tasks. We look into two downstream tasks:
action classification and clip retrieval.

Action Classification For this task, the model is finetuned end-to-end on downstream datasets,
on UCF101 and HMDB51. In Table 1, we compare our best-performing model with other previous
state-of-the-art approaches. Observations: With only 30k videos compared to 200k+ videos used
by other pretext tasks, we show that our model outperforms by a good margin on UCF101 against
single and multi-modal approaches. We got competitive results on HMDB51 with a score of 51.5%.
Looking in depth regarding HMDB performance, approaches that are ahead of ours are [34], [42]
in cross-modal and [44] and [12] in single modality (ignoring ViT backbone and IG65M dataset).
Compared to ours, these approaches use bigger spatial resolution (CVRL and AVTS), and multiple
modalities (AVTS and GDT) and all of them use more effective frames.

Clip retrieval For this downstream task, we generate the feature vectors using pretraining weights.
The nearest neighbor is found by measuring the cosine distance between test and train feature vectors.
We show analysis on UCF101 and HMDB51, with different source data distributions, K400 and SSv2.
Observations: Spatio-temporal task still outperform other categories independent of source data
distribution similar to what we observe earlier. Contrastive learns better appearance features during
the pre-training stage given both downstream datasets are appearance based. Temporal tasks have
almost similar performance pre-trained on either of the source datasets, which shows even with an
appearance-based dataset as a pre-train dataset, the task is not focusing much on spatial features.
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4.1 Surprising Findings

We have multiple inference from different axes of analysis. However, to club a few which are new
and helpful for video self-supervised community, we list down those here:

Dataset size and Training time Dependency: Against the conventional belief that a lot of training
data is a must to achieve the best performance, we demonstrate that beyond a certain amount of training
data, additional data provides diminishing returns for SSL in terms of performance improvement. This
finding has significant implications, as it allows for a substantial reduction in the training data and
there is almost a 10x reduction in training time which is particularly advantageous in computationally
demanding video processing tasks. Furthermore, we show how KD as a tool, outperforms the original
approach (100% data) using almost 90% less data further optimizing resource utilization by roughly
80%.

Robustness to real-world noise To our surprise, contrastive tasks are more susceptible to noise
than non-contrastive ones. A smaller network tends to be more robust in some scenarios than a
bigger network. We believe these findings are novel and not known to the community as there is no
existing study exploring these aspects and are helpful where robustness is necessary for real-world
deployment.

Complementary knowledge Improvement in performance in the case of KD from different data
distributions and categories of tasks brings out a recipe for a new SSL task. This involves utilizing a
multi-teacher multi-student setup, where each teacher specializes in spatial and temporal tasks and is
trained on a mixture of data sources. Our analysis indicates this would provide a powerful learning
scenario.

Recommendations Looking into several factors, here we provide some recommendations to set up
the recipe for self-supervised learning: 1) Training speed: If training time is a concern, contrastive
tasks can help in reducing the pretraining time. The only downside is, they could be less robust against
data noise. 2) Data distribution: It is always better to use a spatio-temporal pretext task irrespective
of the data distribution. However, if that is not an option, the pretext task should always be aligned
with the nature of the pretraining dataset. 3) Model capacity: If model capacity is limited, there is
no benefit of increasing pretraining dataset size and using complex pretext tasks. 4) Robustness: If
best performance is the goal we should use a non-contrastive as opposed to a contrastive pretext task.
5) Performance: Pretext tasks learn complementary features across model architectures, pretraining
datasets, pretext tasks, and tasks complexity, therefore, this complementary knowledge can be distilled
to obtain strong spatio-temporal features.

5 Pretext Tasks Details

In this section, we go through each pretext task in more detail that is used in our main work for
analysis.

5.1 Spatial Transformation

Rotation Net [29] (RotNet) applies geometrical transformation on the clips. The videos are rotated
by various angles and the network predicts the class to which it belongs to. Since the clips are rotated,
it helps the network to not converge to a trivial solution.

Contrastive Video Representation Learning [44] (CVRL) technique applies temporally coherent
strong spatial augmentations to the input video. The contrastive framework brings closer the clips
from the same video and repels the clip from another video. With no labels attached, the network
learns to cluster the videos of the same class but with different visual content.

5.2 Temporal Transformation
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Figure 7: Example frame sample for each noise Gaussian, Impulse, Shot, and Speckle from left to
right. Sample clips are provided in the supplementary.

Video Clip Order Prediction [66] (VCOP) learns the representation by predicting the permutation
order. The network is fed N clips from a video and then it predicts the order from N! possible
permutations.

Temporal Discriminative Learning [62] (TDL) In contrast to CVRL, TDL works on temporal
triplets. It looks into the temporal dimension of a video and targets them as unique instances. The
anchor and positive belong to the same temporal interval and have a high degree of resemblance in
visual content compared to the negative.

5.3 Spatio-Temporal Transformation

Playback Rate Prediction [69] (PRP) has two branch, generative and discriminative. Discrimi-
native focuses on classifying the clip’s sampling rate, whereas, generative reconstructs the missing
frame due to dilated sampling. Thus, the first one concentrates on the temporal aspect, and the second
one on the spatial aspect.

Relative Speed Perception Network [9] (RSPNet) applies contrastive loss in both spatial and
temporal domain. Clips are samples from the same video to analyze the relative speed between them.
A triplet loss pulls the clips with the same speed together and pushes clips with different speeds apart
in the embedding space. To learn spatial features, InfoNCE loss [59] is applied. Clips from the same
video are positives whereas clips from different videos are negatives.

Video MAE [56] (V-MAE) applies a spatio-temporal tube masking to the input video. The pretext
task is to reconstruct those missing tubes. Mean-squared error loss is applied between the masked
tokens and the reconstructed tokens.

6 Implementation Details

6.1 Architecture Details

Preliminary research has shown that 3D networks [58, 23] have outperformed 2D CNN variants on
video recognition tasks. We looked into three types of capacity - small, medium, and big on the basis
of the number of trainable parameters. The architecture details of all networks are mentioned in the
supplementary.

Small capacity networks: are resource efficient, implying they can be trained in larger batches
within a short span of time. The network selection is done on the basis of supervised training scores
on Kinetics[30] and UCF101[33]. ShuffleNet V1 2.0X [70] utilizes point-wise group convolutions
and channel shuffling. SqueezeNet [26] reduces the filter size and input channels to reduce the
number of parameters. MobileNet [46] has ResNet-like architecture. With its depthwise convolution,
there’s a reduction in model size and the network can go more deep.

Medium capacity networks: Following the conventional 3D architectures for self-supervised
learning approaches C3D, R21D and R3D are used in this study.
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Big Capacity networks: Comparing across four transformer architectures, ViViT [4] Timesformer
[7], VideoSwin [37] and MViT [15], we selected VideoSwin, because it outperforms others on
Kinetics 400 dataset.

Based on [33], we probed into the performance comparison of several versions of these architectures.
We choose 3D-ShuffleNet V1 2.0X, 3D-SqueezeNet, and 3D-MobileNet V2 1.0X networks based on
their performance on Kinetics and UCF-101 dataset

3D-ShuffleNet V1 2.0X [70]: It utilizes point-wise group convolutions and channel shuffling and has
3 different stages. Within a stage, the number of output channels remains the same. As we proceed to
the successive stage, the spatiotemporal dimension is reduced by a factor of 2, and the number of
channels is increased by a factor of 2. V1 denotes version 1 of ShuffleNet and 2.0X denotes the 2
times number of channels compared to the original configuration.

3D-SqueezeNet [26]: It uses different alterations to reduce the number of parameters as compared
to the 2D version which employs depthwise convolution. Those three modifications are: 1) Change
the shape of filters from 3x3 to 1x1, 2) Input channels to 3x3 filters is reduced, and, 3) to maintain
large activation maps high resolution is maintained till deep layers.

3D-MobileNet V2 1.0X [46]: This network employs skip connections like ResNet architecture in
contrast to version 1. It helps the model in faster training and to build deeper networks. There are
also linear bottlenecks present in the middle of layers. It helps in two ways as we reduce the number
of input channels: 1) With depthwise convolution, the model size is reduced, and 2) at inference
time, memory usage is low. V2 denotes version 2 of mobilenet and 1.0X uses the original parameter
settings.

The architectures of medium-capacity networks are described as follows:

C3D [57]: This follows a simple architecture where two-dimensional kernels have been extended
to three dimensions. This was outlined to capture spatiotemporal features from videos. It has 8
convolutional layers, 5 pooling layers, and 2 fully connected layers.

R3D [23]: The 2D CNN version of ResNet architecture is recasted into 3D CNNs. It has skip
connections that help make the gradient flow better as we build deeper networks.

R(2+1)D [58]: In this architecture, 3D convolution is broken down into 2D and 1D convolution. 2D
convolution is in the spatial dimension and 1D convolution is along the temporal dimension. There
are two benefits of this decomposition: 1) An increase in non-linearity as the number of layers has
increased, and, 2) Due to factorization of 3D kernels, the optimization becomes easier.

VideoSwin [37] It is an inflated version of original Swin [36] transformer architecture. The attention
is now spatio-temporal compared to the previous which is only spatial. 3D tokens are constructed
from the input using a patch partition and sent to the network. The architecture includes four stages
of transformer block and patch merging layers.

6.2 Original and Noise Datasets

The test datasets have different number of videos for different levels and types of noises. For Gaussian
noise, we manipulated all 3783 samples. For noise level 1, apart from Gaussian, we had roughly 400
samples and all other levels of severity, we have approximately 550 samples. An example of each
type of noise is shown in Fig. 7.

6.3 Pretext Tasks Configurations

Here, we briefly describe the configurations used in our training. For VCOP, RotNet and PRP, we
just manipulated the type of augmentation from the original work. We applied Random Rotation,
Resizing, Random Crop, Color Jittering, and Random Horizontal Flipping to the input clip. CVRL
has some extra data augmentation compared to the previous ones we mentioned. It includes grayscale
and gamma adjustment as well. RSPNet also uses some temporal augmentation. For finetuning the
augmentations are Resize and Center cropped for all the approaches.

The k-value for Momentum contrastive network is 16384 for RSPNet, it’s 500 for TDL.
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Figure 8: Pretext tasks CKA maps for RSPNet, PRP, RotNet, VCOP, CVRL on K-400 50k subset
using R21D network (Left to right). R21D pretrained on K400 shows a semi-block structure for
VCOP, indicating the near-saturation condition of the network on this pretext task. It shows a more
prominent grid-based structure on CVRL and RSPNet instead. These observations corroborate the
quantitative results, where pretraining on K400 for both CVRL and RSPNet gives better performance.

6.4 Datasets

Here we discuss datasets in detail. We use Kinetics-400 (K400) [30] and Something-Something
V2 [20] for our pre-training. For the downstream task evaluation, we perform our experiments on
UCF-101 [51], and HMDB-51 [35]. Since the pretraining and finetuning datasets are different, the
performance variation will provide us with a better picture of how much meaningful spatiotemporal
features are learned by these networks. K400 has approximately 240k videos distributed evenly
across 400 classes respectively. The approximate number of videos in finetuning datasets are: 1)
UCF101-10k, and, 2) HMDB51-7k. The datasets can be categorized into two ways:

Appearance-based: Kinetics, UCF101 and HMDB51 comes under this category [11, 25]. Kinetics
videos length are generally 10s centered on human actions. It mainly constitutes singular person
action, person-to-person actions, and person-object action. For pre-training, we select a random
subset of videos and maintain equal distribution from each class. Unless otherwise stated, pre-training
is done on the K400-50k subset for all experiments.

Temporal-based: In Kinetics, we can estimate the action by looking at a single frame [11, 25].
However in SSv2, we can’t describe the activity class until we look into a few continuous frames. It
shows that the temporal aspect plays an important role for these datasets, that’s why we categorize
them into temporal-based datasets.

UCF-101 [51] : It’s an action recognition dataset that spans over 101 classes. There are around
13,300 videos, with 100+ videos per class. The length of videos in this dataset varies from 4 to
10 seconds. It covers five types of categories: human-object interaction, human-human interaction,
playing musical instruments, body motion, and sports.

HMDB-51 [35] : The number of videos in this dataset is 7000 comprising 51 classes. For each
action, at least 70 videos are for training and 30 videos are for testing. The actions are clubbed
into five categories: 1) General facial actions, 2) Facial actions with body movements, 3) General
body movements, 4) Body movements with object interaction, and, 5) Body movements for human
interaction.

7 Additional Results

Here, we will talk about some additional results, to further strengthen the claims made in the main
paper.

7.1 Preliminary Experiments

Pretext tasks evaluation Figure 8 depicts the hidden representations of R21D network pretrained
on different pretext tasks. Here the 50k subset of K-400 was used for pretraining and finetuned on
UCF-101.

Linear Probing vs Finetuning Firstly, we discuss linear probing (LP) vs finetuning (FT) results
for different pretext tasks and different architectures. From Table 7, we can see that FT outperforms
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Figure 9: Training time CKA maps on 50, 100, 150, 200 epochs of R21D network on RSPNet
pretext for K-400 10k subset (Left to right). The block structure is visible from 50 epochs itself,
which then darkens and becomes prominent by 200 epochs. With 10k subset, the saturation starts
hitting at 100 epochs.

Non-contrastive Contrastive

Epochs VCOP Rot PRP CVRL TDL RSPNet

10k 18.9 15.0 9.2 22.2 9.9 30.2
30k 19.3 11.7 11.5 25.0 10.1 37.3
50k 17.3 12.2 10.2 29.3 9.5 40.2

Table 6: Evaluation of different pretext tasks on different subset size on R21D network on HMDB51
dataset.

Network LP FT RotNet VCOP PRP

Shuffle ✓ 4.3 12.3 2.8
✓ 16.6 40.8 21.9

R21D ✓ 2.7 12.2 4.6
✓ 41.2 51.5 46.2

Table 7: Downstream accuracy classification on UCF-101 dataset. FT: Finetuning LP: Linear
Probing

Networks Parameters GFLOPs Rot† VCOP † PRP† RSPNet
ShuffleNet 4.6M 1.1 42.2 41.6 41.1 68.8
MobileNet 3.1M 1.1 38.0 40.0 37.4 63.1
SqueezeNet 1.9M 1.8 41.3 41.4 39.2 62.9

C3D 27.7M 77.2 57.7 54.5 58.1 67.6
R3D 14.4M 39.8 51.1 50.7 52.1 62.1

R(2+1)D 14.4M 42.9 46.9 56.8 58.9 78.0

Table 8: Comparison of FLOPs and trainable parameters for each network on UCF101 dataset. † -
pretraining on Kinetics 700 [8].

LP by a margin of approximately 20% and 40% on ShuffleNet and R21D respectively. Thus, we
perform finetuning for all of our analyses.

Network Parameters We have shown the performance across different architectures in Table 8.
ShuffleNet and R21D perform the best across small and medium capacity networks in most of the
pretext tasks. Thus, we choose ShuffleNet and R21D for our benchmark analysis.

7.2 Effect of dataset size

In Table 2, we extend results for different pretext tasks on the HMDB51 dataset. Similar to UCF101,
the scale in subset size doesn’t reciprocate to gain in performance for all pretext tasks on the HMDB51
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Figure 10: Multiple architectures and data subsets on UCF101. Pretext task is RSPNet. (x-axis:
subset size, y-axis: Top-1 Accuracy) Here, 10 means 10k dataset subset, 30 means 30k and so on.

Epochs Shuffle R21D Swin

10k 30k 50k 100k 10k 30k 50k 100k 10k 30k 50k 100k
50 59.1 66.3 68.1 68.9 66.8 71.1 75.0 77.2 - 40.4 44.9 52.0

100 60.3 67.6 68.7 69.0 69.5 75.2 76.1 80.0 37.2 44.3 49.6 58.5
150 61.8 66.7 69.4 69.7 69.5 76.6 76.5 78.8 37.9 46.2 50.7 61.3
200 61.5 68.2 68.5 69.9 69.6 76.6 77.4 78.3 36.8 46.3 52.5 61.5

Table 9: RSPNet with different subset size on ShuffleNet/R21D/VideoSwin on UCF101 dataset.

dataset. From Figures 10 and 11, we see that performance increase for Swin by a good margin,
whereas in the case of ShuffleNet and R21D, it’s relatively less beyond 50k subset.

Training time Table 9 shows VideoSwin saturates at 150 epochs on UCF101 whereas CNN
architectures saturate earlier (100 epochs) which reflects the limitation of model capacity. Figure 9
shows the emergence of block structures for the R21D network trained on RSPNet for K400 10k.
The saturation point has reached earlier around 100 epochs which supports the hypothesis in the main
work that CNN architectures mostly saturates around 100 epochs. We see a similar pattern even after
increasing the dataset size.

7.3 Impact of task complexity

Figures 12 show for ShuffleNet dark patterns with an increase in complexity. R21D shows staggering
grids. It supports our hypothesis that model capacity plays an important role to learn meaningful
features and always increasing the complexity doesn’t reciprocate to better spatio-temporal features.

7.4 Effect of data distrbituion

Figure 14 illustrates CKA maps for networks pretrained on different source datasets - for R21D
pretrained on K400-50k on VCOP and CVRL respectively. The stark difference in the semi-block
structure of spatial (VCOP) vs grid-like structure of spatio-temporal (CVRL) shows spatio-temporal
outperforms spatial pretext task.
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Figure 11: Multiple architectures and data subsets on HMDB51. Pretext task is RSPNet. (x-axis:
subset size, y-axis: Top-1 Accuracy) Here, 10 means 10k dataset subset, 30 means 30k and so on.

Figure 12: Complexity CKA maps PRP ShuffleNet (Left) and R21D (Right) network increasing
complexity from 2 to 4 (Left to right). ShuffleNet has lower performance than R21D, and it shows
darkest patterns when complexity is increased from 3 to 4. For both of these complexities, R21D
shows staggering grids.

Figure 13: Relative decrease in performance at three different severity levels in increasing order
from left to right. The pretext tasks is depicted by following colors - RotNet, VCOP, PRP, CVRL,
TDL, RSPNet.

7.5 Robustness of SSL tasks

Table 10 shows the performance of each pretext on each type of noise for severity level 1. Fig. 13
shows a relative decrease in performance for three different severity levels on the UCF101 dataset.
Non-contrastive tasks are more robust than contrastive on average even at different severity levels.
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Figure 14: Out-of-distribution CKA maps: on VCOP and CVRL for R21D Network (Left to right).
The semi-block structure of VCOP contrasts sharply with the grid-like structure of CVRL.

Non-contrastive Contrastive

RotNet VCOP PRP CVRL TDL RSP

No Noise 41.2 51.5 46.2 61.2 31.7 78.0
Gaussian 40.9 47.0 14.6 12.7 28.0 16.7
Impulse 38.1 30.5 5.4 3.5 18.8 8.5
Shot 33.4 45.1 20.9 26.4 21.5 45.1
Speckle 34.7 43.9 14.4 13.1 24.7 27.0

Table 10: Analysis of all pretext tasks with noise severity level 1 on R21D network on UCF101
dataset.

TC↓ RotNet VCOP PRP

T1 20.1/48.3 41.6/56.8 24.2/38.9
T2 20.2/58.3 41.8/54.8 18.1/44.4
T3 16.6/41.2 40.6/55.6 21.9/46.2

S 75.0/56.6 75.4/43.5 76.1/61.0
Table 11: Complexity variation with at three levels as teachers (T1, T2, T3) for all three pretext
tasks. TC: Task complexity. Results are shown on UCF101 with ShuffleNet/R21D as backbones.

7.6 Feature Analysis

We employ knowledge distillation to evaluate how complementary information from different datasets
can be used to train a student model that could take advantage of this in terms of performance gain
and training time reduction. Here we show the numbers quantitatively. Table 11 shows smaller
architecture leans complementary information whereas bigger architecture depends on pretext task.
Table 12 shows that for each pretext task, we learn complimentary information from two different
source datasets. Thus, the student always outperforms the teachers. Table 13 shows that distilling
knowledge from a spatial and a temporal task outperforms the standalone spatio-temporal task in
both contrastive and non-contrastive case.
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K400 (T1) SSV2(T2) Student

RotNet 36.2 42.5 59.8
VCOP 50.4 59.7 67.6
CVRL 56.9 34.7 66.6
RSPNet 76.4 69.5 80.2

Table 12: Out-of-Distribution settings on UCF101 dataset using R21D network with teachers as
different source datasets.

S (T1) T(T2) Student

Non-Contrastive RotNet VCOP 61.1
Contrastive CVRL TDL 70.3

Table 13: Knowledge distillation across different pretext tasks. Teachers: ShuffleNet; Student:
ShuffleNet.

Network Top@1 Top@5

Squeeze 15.9/38.5 37.6/56.5
Mobile 16.2/37.4 36.5/55.6
Shuffle 19.3/43.1 42.0/62.1

C3D 19.9/43.2 43.4/61.6
R3D 19.3/40.4 42.5/60.2
R21D 18.2/42.7 40.1/62.8

Table 14: Top K Clip Retrieval on HMDB51/UCF101 across different architectures for RSPNet.

7.7 Clip retrieval

In Table 14, we show clip retrieval across different architectures on HMDB51 and UCF101 dataset.
Amongst small capacity networks, ShuffleNet outperforms others and in medium-capacity R21D
outperforms.
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